SIPLab
Structured Information for Precision Neuroengineering Lab

publications

Refereed Papers | Conference Abstracts | Book Chapters | Other Publications


Refereed Papers

  Cingulate dynamics track depression recovery with deep brain stimulation
S. Alagapan, S. Heisig, K Choi, P. Riva-Posse, A. Crowell, V. Tiruvadi, M. Obatusin, A. Veerakumar, A. Waters, R. Gross, S. Quinn, L. Denison, M. O’Shaughnessy, M. Connor, G. Canal, J. Cha, R. Hershenberg, T. Nauvel, F. Isbaine, M. Afzal, M. Figee, B. Kopell, R. Butera, H. Mayberg and C. Rozell. Nature, . Advanced Online Publication.
[bibtex] [url]

  Distance preservation in state-space methods for detecting causal interactions in dynamical systems
M. O'Shaughnessy, M. Davenport and C. Rozell. . Under review.
[bibtex] [url]

 Subcallosal Cingulate Deep Brain Stimulation Evokes Two Distinct Cortical Responses via Differential White Matter Activation
A. Seas, M.S. Noor, K.S. Choi, A. Veerakumar, M. Obatusin, J. Dahill-Fuchel, V. Tiruvadi, E. Xu, P. Riva-Posse, C.J. Rozell, H.S. Mayberg, C.C. McIntyre, A.C. Waters and B. Howell. . Under review.
[bibtex]

 PrefGen: Preference Guided Image Generation with Relative Attributes
A. Helbling, C. J. Rozell, M. O'Shaughnessy and K. Fallah. . Under review
[bibtex]

  Neuroethics guidance documents: Principles, analysis, and implementation strategies
M. O'Shaughnessy, W.G. Johnson, L. Tournas, C. Rozell and K. Rommelfanger. Journal of Law and the Biosciences, . In press.
[bibtex] [url]

  Learning Internal Representations of 3D Transformations from 2D Projected Inputs
M. Connor, B. Olshausen and C. Rozell. . Under review.
[bibtex] [url]

 Leveraging Physiological Markers to Quantify the Transient Effects of Traumatic Stress and Non-Invasive Neuromodulation
A.H. Gazi, J.A. Sanchez-Perez, S. Natarajan, M. Chan, M. Nikbakht, D.J. Lin, J.D. Bremner, J. Hahn, O.T. Inan and C.J. Rozell. In 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), . \textbfSelected for oral presentation.
[bibtex]

 Cortical signatures of sleep are altered following effective deep brain stimulation for depression
J.J. van Rheede, S. Alagapan, T. Denison, P. Riva-Posse, C. Rozell, H. Mayberg, A.C. Waters and A. Sharott. . Under review.
[bibtex]

  What governs attitudes toward artificial intelligence adoption and governance?
M. O'Shaughnessy, D Schiff, L. Varshney, C. Rozell and M. Davenport. Science and Public Policy, 50(2), pp. 161–176, .
[bibtex] [url] [doi]

  Active Learning of Ordinal Embeddings: A User Study on Football Data
C. Loeffler, K. Fallah, S. Fenu, D. Zanca, B. Eskofier, C.J. Rozell and C. Mutschler. Transactions on Machine Learning Research, .
[bibtex] [url]

 Exploration of Acute Effects of Stimulation Frequency on Subcallosal Cingulate Dynamics in SCC DBS
E.C. Fitoz, S. Alagapan, A. Waters, V. Tiruvadi, A. Veerakumar, M. Obatusin, K.S. Choi, A. Crowell, P. Riva-Posse, R. Butera, H. Mayberg and C.J. Rozell. In 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), .
[bibtex]

  A low-complexity brain-computer interface for high-complexity robot swarm control
G. Canal, Y. Diaz-Mercado, M. Egerstedt and C. Rozell. IEEE in Transactions on Neural Systems & Rehabilitation Engineering, vol. 31, pp. 1816–1825, .
[bibtex] [url] [doi]

  Learning Identity-Preserving Transformations on Data Manifolds
M. Connor, K. Fallah and C. Rozell. Transactions on Machine Learning Research, .
[bibtex] [url]

 Proceedings of the 10th Annual Deep Brain Stimulation Think Tank: Advances in Cutting Edge Technologies, Artificial Intelligence, Neuromodulation, Neuroethics, Interventional Psychiatry and Women in Neuromodulation
J.K. Wong, H.S. Mayberg, D.D. Wang, R.M. Richardson, C. Halpern, L. Krinke, M. Arlotti, L. Rossi, A. Priori, S. Marceglia, R. Gilron, J. Cavanagh, J. Judy, S. Miocinovic, A. Devergnas, R.V. Sillitoe, S. Oehrn C.R. Cernera, A. Gunduz, W. Goodman, E. Petersen, H.M. Bronte-Stewart, R.S. Raike, M. Malekmohammadi, D. Greene, P. Heiden, H. Tan, J. Volkmann, V. Voon, L. Li, P. Sah, Y. Coyne, P.A. Silburn, C. Kubu, A. Wexler, J.A. Chandler, N.A. Provenza, S.R. Heilbronner, M. San Luciano, C.J. Rozell, M.D. Fox, C. de Hemptinne, J. Henderson, S.A. Sheth and M.S. Okun. Frontiers in Human Neuroscience, vol. 16, .
[bibtex] [doi]

  Cleo: a testbed for bridging model and experiment by simulating closed-loop stimulation, electrode recording, and optogenetics
K.A. Johnsen, N.A. Cruzado, A.A. Willats and C. J. Rozell. . Under review.
[bibtex] [url]

 Pain is Reduced by Transcutaneous Cervical Vagus Nerve Stimulation and Correlated with Cardiorespiratory Variability Measures in the Context of Opioid Withdrawal
A. H. Gazi, A. B. Harrison, T. P. Lambert, A. Nawar, M. Obideen, E.G. Driggers, V. Vaccarino, A. J. Shah, C. J. Rozell, M. Biokson, J. W. Welsh, O. T. Inan and D. J. Bremner. Frontiers in Pain Research, vol. 3, pp. 1031368, .
[bibtex]

 Transcutaneous Cervical Vagus Nerve Stimulation Reduces Respiratory Variability in the Context of Opioid Withdrawal
A. H. Gazi, A. B. Harrison, T. P. Lambert, M. Obideen, J. W. Welsh, V. Vaccarino, A. J. Shah, S. E. Back, C. J. Rozell, D. J. Bremner and O. T. Inan. In IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), .
[bibtex]

  Time-frequency signatures evoked by single-pulse deep brain stimulation to the subcallosal cingulate
E.E. Smith, K.S. Choi, A. Veerakumar, M. Obatusin, B. Howell, A. Smith, V. Tiruvadi, A.L. Crowell, P. Riva-Posse, S. Alagapan, C. Rozell, Mayberg H.S. and A.C. Waters. Frontiers in Human Neuroscience, vol. 16, .
[bibtex] [url]

 Passively Captured Interpersonal Social Interactions and Motion from Smartphones Predicts Decompensation in Heart Failure: An Observational Cohort Study
A. Cakmak, E. Alday, S. Densen, G. Najarro, P. Rout, C. J. Rozell, O.T. Inan, A.J. Shah and G.D. Clifford. JMIR Formative Research, 6(8), pp. e36972, .
[bibtex]

  Variational Sparse Coding with Learned Thresholding
K. Fallah and C. Rozell. In International Conference on Machine Learning (ICML), . \textbfSelected for oral presentation. (Acceptance rate 22%)
[bibtex] [url]

  Proceedings of the Ninth Annual Deep Brain Stimulation Think Tank: Advances in Cutting Edge Technologies, Artificial Intelligence, Neuromodulation, Neuroethics, Pain, Interventional Psychiatry, Epilepsy and Traumatic Brain Injury
J.K. Wong, H. Bergman, M. Muthuraman, S. Groppa, S.A. Sheth, H.M. Bronte-Stewart, K.B. Wilkins, M.N. Petrucci, E. Lambert, Y. Kehnemouyi, P. Starr, S. Little, J. Anso, R. Gilron, L. Poree, G.P. Kalamangalam, G. Worrell, K.J. Miller, N.D. Schiff, C.R. Butson, J. Henderson, J.W. Judy, A. Ramirez-Zamora, K.D. Foote, G. Deuschl, R. Wolke, P.A. Silburn, L. Li, G. Oyama, H. Kamo, S. Sekimoto, N. Hattori, J.J. Giordano, D. DiEuliis, J. Shook, D.D. Dougherty, A.S. Widge, H.S. Mayberg, J. Cha, K.S. Choi, S. Heisig, M. Obatusin, E. Opri, S.B. Kaufman, P Shirvalkar, C.J. Rozell, S. Alagapan, R.S. Raike, H. Bokil, D. Greene and M.S. Okun. Frontiers in Human Neuroscience, vol. 16, .
[bibtex] [url]

  Constrained brain volume in an efficient coding model explains the fraction of excitatory and inhibitory neurons in sensory cortices
A. Alreja, I. Nemenman and C. Rozell. PLOS Computational Biology, 18(1), pp. e1009642, .
[bibtex] [url] [doi]

 Infrared Search and Track with Unbalanced Optimal Transport Dynamics Regularization
N. Bertrand, J. Lee, K. Prussing, S. Shapero and C.J. Rozell. IEEE Geoscience and Remote Sensing Letters, 18(12), pp. 2072–2076, .
[bibtex] [doi]

  Harnessing the Manifold Structure of Cardiomechanical Signals for Physiological Monitoring during Hemorrhage
J. Zia, J. Kimball, C.J. Rozell and O.T. Inan. IEEE Transactions on Biomedical Engineering, 68(6), pp. 1759-1767, .
[bibtex] [url] [doi]

  Towards Democratizing and Automating Online Conferences: Lessons from the Neuromatch Conferences
T. Achakulvisut, T. Ruangrong, P. Mineault, T.P. Vogels, M. Peters, P. Poirazi, C. Rozell, B. Wyble, D. Goodman and K.P. Kording. Trends in Cognitive Sciences, 25(4), pp. 265-268, .
[bibtex] [url] [doi]

  Variational Autoencoder with Learned Latent Structure
M. Connor, G. Canal and C. Rozell. In International Conference on Artificial Intelligence and Statistics (AISTATS), . (Acceptance rate 30%)
[bibtex] [url]

  Feedback Coding for Active Learning
G. Canal, M. Bloch and C. Rozell. In International Conference on Artificial Intelligence and Statistics (AISTATS), . (Acceptance rate 30%)
[bibtex] [url]

 A 17.8 MS/s Compressed Sensing Radar Accelerator Using a Spiking Neural Network
P. Brown, M. O'Shaughnessy, C.J. Rozell, J. Romberg and M. Flynn. IEEE Journal of Solid State Circuits, 56(3), pp. 834–843, .
[bibtex] [doi]

  State-space optimal feedback control of optogenetically driven neural activity
M.F. Bolus, A.A. Willats, C.J. Rozell and G.B. Stanley. Journal of Neural Engineering, 18(3), pp. 036006, .
[bibtex] [url] [doi]

  Generative causal explanations of black-box classifiers
M. O'Shaughnessy, G. Canal, M. Connor, M. Davenport and C. Rozell. In Neural Information Processing Systems (NeurIPS), . (Acceptance rate 20%)
[bibtex] [url]

  Learning sparse codes from compressed representations with biologically plausible local wiring constraints
K. Fallah, A. Willats, N. Liu and C. Rozell. In Neural Information Processing Systems (NeurIPS), . (Acceptance rate 20%)
[bibtex] [url]

  Unbalanced Optimal Transport Regularization for Imaging Problems
J. Lee, N. Bertrand and C.J. Rozell. IEEE Transactions on Computational Imaging, vol. 6, pp. 1219-1232, .
[bibtex] [url]

  Efficient Tracking of Sparse Signals via an Earth Mover's Distance Dynamics Regularizer
N. Bertrand, A. Charles, J. Lee, P. Dunn and C.J. Rozell. IEEE Signal Processing Letters, vol. 27, pp. 1120-1124, .
[bibtex] [url]

  An unbiased efficient sleep-wake detection algorithm for a population with sleep disorders: Change Point Decoder
A. Cakmak, G. Da Poian, A. Willats, A. Haffar, R. Abdulbaki, Y. Ko, A. Shah, V. Vaccarino, D. Bliwise, C.J. Rozell and G. Clifford. Sleep, .
[bibtex] [url]

  Active ordinal tuplewise querying for similarity learning
G. Canal, S. Fenu and C. Rozell. In AAAI Conference on Artificial Intelligence (AAAI), . \textbfSelected for oral presentation. (Acceptance rate 20%).
[bibtex] [url]

  Representing Closed Transformation Paths in Encoded Network Latent Space
M. Connor and C. Rozell. In AAAI Conference on Artificial Intelligence (AAAI), . \textbfSelected for spotlight presentation. (Acceptance rate 20%).
[bibtex] [url]

  Sparse Bayesian Learning with Dynamic Filtering for Inference of Time-Varying Sparse Signals
M. O'Shaughnessy, M. Davenport and C. Rozell. IEEE Transactions on Signal Processing, 68(1), pp. 388–403, .
[bibtex] [url]

  Hierarchical Optimal Transport for Multimodal Distribution Alignment
J. Lee, M. Dabagia, E. Dyer and C.J. Rozell. In Neural Information Processing Systems (NeurIPS), . (Acceptance rate 21%)
[bibtex] [url]

  Sparse Coding Using the Locally Competitive Algorithm on the TrueNorth Neurosynaptic System
K.L. Fair, D.R. Mendat, A.G. Andreou, C.J. Rozell, J. Romberg and D.V. Anderson. Frontiers in Neuroscience, vol. 13, pp. 754, .
[bibtex] [url]

  Sub-second Dynamics of Theta-Gamma Coupling in Hippocampal CA1
L. Zhang, J. Lee, C.J. Rozell and A.C. Singer. eLife, vol. 8, pp. e44320, .
[bibtex] [url]

  Active embedding search via noisy paired comparisons
G. Canal, A. Massimino, M. Davenport and C. Rozell. In International Conference on Machine Learning (ICML), . (Acceptance rate 23%)
[bibtex] [pdf]

  PatcherBot: a single-cell electrophysiology robot for adherent cells and brain slices
I. Kolb, C. Landry, M. Yip, C. Lewallen, W. Stoy, J. Lee, A. Felouzis, B. Yang, E.S. Boyden, C.J. Rozell and C.R. Forest. Journal of Neural Engineering, 16(4), pp. 046003, .
[bibtex] [url]

 Unsupervised learning of manifold models for neural coding of physical transformations in the ventral visual pathway
M. Connor and C. Rozell. In Conference on Cognitive Computational Neuroscience, .
[bibtex]

 Short-term Sequence Memory: Compressive effects of Recurrent Network Dynamics
A. Charles, H.L. Yap, D. Yin and C. Rozell. In Conference on Cognitive Computational Neuroscience, .
[bibtex]

  Matched Filtering for Heart Rate Estimation on Compressive Sensing ECG Measurements
G. Da Poian, C.J. Rozell, R. Bernardini, R. Rinaldo and G.D. Clifford. IEEE Transactions on Biomedical Engineering, 65(6), pp. 1349–1358, .
[bibtex] [url]

 Controlling high-complexity robotic swarms with low-complexity EEG brain-computer interfaces
G. Canal, Y. Diaz-Mercado, M. Egerstedt and C. Rozell. In International BCI Meeting, .
[bibtex]

  Cell Membrane Tracking in Living Brain Tissue using Differential Interference Contrast Microscopy
J. Lee, I. Kolb, C. Forest and C.J. Rozell. IEEE Transactions on Image Processing, pp. 1847–1861, .
[bibtex] [url]

  Stabilizing Embedology: Geometry-Preserving Delay-Coordinate Maps
A. Eftekhari, H.L. Yap, M.B. Wakin and C.J. Rozell. Physical Review E, 97(2), pp. 022222, .
[bibtex] [url] [doi]

  Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo
M.F. Bolus, A.A. Willats, C.J. Whitmire, C.J. Rozell and G.B. Stanley. Journal of Neural Engineering, 15(2), pp. 026011, .
[bibtex] [url]

  Distributed Sequence Memory of Multidimensional Inputs in Recurrent Networks
A.S. Charles, D. Yin and C.J. Rozell. Journal of Machine Learning Research, 18(7), pp. 1-37, .
[bibtex] [pdf]

  Rank Learning by Ordinal Gerrymandering
S. Fenu and C.J. Rozell. In Proceedings of the IEEE International Conference On Machine Learning And Applications (ICMLA), .
[bibtex] [url]

  Neuromorphic computation: Sparse codes from memristor grids
B.A. Olshausen and C.J. Rozell. Nature Nanotechnology, 12(8), pp. 722–723, .
[bibtex] [url]

  Dynamic Filtering of Time-Varying Sparse Signals via L1 Minimization
A.S. Charles, A. Balavoine and C.J. Rozell. IEEE Transactions on Signal Processing, 64(21), pp. 5644–5656, .
[bibtex] [url]

  Outcome measures based on classification performance fail to predict the intelligibility of binary-masked speech
A.A. Kressner, T. May and C.J. Rozell. Journal of the Acoustical Society of America, 139(6), pp. 3033–3036, .
[bibtex] [url]

  Cochlear implant speech intelligibility outcomes with structured and unstructured binary mask errors
A.A. Kressner, A. Westermann, J. Buchholz and C.J. Rozell. Journal of the Acoustical Society of America, 139(2), pp. 800–810, .
[bibtex] [url]

  Electrical and optical activation of mesoscale neural circuits with implications for coding
D. Millard, C. Whitmire, C.A. Gollnick, C.J. Rozell and G.B Stanley. Journal of Neuroscience, 35(47), pp. 15702–15715, .
[bibtex] [url]

  Modeling Inhibitory Interneurons in Efficient Sensory Coding Models
M. Zhu and C.J. Rozell. PLoS Computational Biology, 11(7), pp. e1004353, .
[bibtex] [url]

  Discrete and Continuous-time Soft-Thresholding with Dynamic Inputs
A. Balavoine, C.J. Rozell and J. Romberg. IEEE Transactions on Signal Processing, 63(12), pp. 3165–3176, .
[bibtex] [pdf]

  Structure in time-frequency binary masking errors and its impact on speech intelligibility
A.A. Kressner and C.J. Rozell. Journal of the Acoustical Society of America, 137(4), pp. 2025–2035, .
[bibtex] [url]

  The Restricted Isometry Property for Random Block Diagonal Matrices
A. Eftekhari, H.L. Yap, C.J. Rozell and M.B. Wakin. Applied and Computational Harmonic Analysis, 38(1), pp. 1–31, .
[bibtex] [pdf]

  Optimal Sparse Approximation With Integrate and Fire Neurons
S. Shapero, M. Zhu, P. Hasler and C.J. Rozell. International Journal of Neural Systems, 24(05), pp. 1440001, .
[bibtex] [url]

 Correction to "Convergence and Rate Analysis of Neural Networks for Sparse Approximation"
A. Balavoine, J. Romberg and C.J. Rozell. IEEE Transactions on Neural Networks and Learning Systems, 25(8), pp. 1595–1596, .
[bibtex]

  Short Term Memory Capacity in Networks via the Restricted Isometry Property
A.S. Charles, H.L. Yap and C.J. Rozell. Neural Computation, 26(6), pp. 1198–1235, .
[bibtex] [pdf]

  Spectral Super-Resolution of Hyperspectral Imagery Using Re-Weighted L1 Spatial Filtering
A.S. Charles and C.J. Rozell. IEEE Geoscience and Remote Sensing Letters, 11(3), pp. 602–606, .
[bibtex] [pdf]

  Configurable Hardware Integrate and Fire Neurons for Sparse Approximation
S. Shapero, C.J. Rozell and P. Hasler. Neural Networks, vol. 45, pp. 134–143, . Special issue on Neuromorphic Engineering: from Neural Systems to Brain-Like Engineered Systems.
[bibtex] [url]

  Convergence Speed of a Dynamical System for Sparse Recovery
A. Balavoine, C.J. Rozell and J. Romberg. IEEE Transactions on Signal Processing, 61(17), pp. 4259–4269, .
[bibtex] [pdf]

  Stable Manifold Embeddings with Structured Random Matrices
H.L. Yap, M.B. Wakin and C.J. Rozell. IEEE Journal of Selected Topics in Signal Processing, 7(4), pp. 720–730, . Special issue on Differential Geometry in Signal Processing.
[bibtex] [pdf]

  Visual nonclassical receptive field effects emerge from sparse coding in a dynamical system
M. Zhu and C.J. Rozell. PLoS Computational Biology, 9(8), pp. e1003191, .
[bibtex] [url]

  Evaluating the generalization of the Hearing Aid Speech Quality Index (HASQI)
A.A. Kressner, D.V. Anderson and C.J. Rozell. IEEE Transactions on Audio, Speech and Language Processing, 21(2), pp. 407–415, .
[bibtex] [pdf]

  A Common Network Architecture Efficiently Implements a Variety of Sparsity-based Inference Problems
A.S. Charles, P. Garrigues and C.J. Rozell. Neural Computation, 24(12), pp. 3317–3339, .
[bibtex] [pdf]

  Convergence and Rate Analysis of Neural Networks for Sparse Approximation
A. Balavoine, J. Romberg and C.J. Rozell. IEEE Transactions on Neural Networks and Learning Systems, 23(9), pp. 1377–1389, .
[bibtex] [pdf]

  Low Power Sparse Approximation on Reconfigurable Analog Hardware
S. Shapero, A.S. Charles, C. Rozell and P. Hasler. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(3), pp. 530–541, . Special issue on Circuits, Systems and Algorithms for Compressive Sensing.
[bibtex] [pdf]

  Concentration of Measure for Block Diagonal Matrices with Applications to Compressive Signal Processing
J.Y. Park, H.L. Yap, C.J. Rozell and M.B. Wakin. IEEE Transactions on Signal Processing, 59(12), pp. 5859–5875, .
[bibtex] [pdf]

  Stable Takens' Embeddings for Linear Dynamical Systems
H.L. Yap and C.J. Rozell. IEEE Transactions on Signal Processing, 59(10), pp. 4781–4794, .
[bibtex] [pdf]

  Learning Sparse Codes for Hyperspectral Imagery
A.S. Charles, B.A. Olshausen and C.J. Rozell. IEEE Journal of Selected Topics in Signal Processing, 5(5), pp. 963–978, .
[bibtex] [pdf]

  Sparse coding via thresholding and local competition in neural circuits
C.J. Rozell, D.H Johnson, R.G. Baraniuk and B.A. Olshausen. Neural Computation, 20(10), pp. 2526–2563, . \textbfSelected for Faculty of 1000 Biology (now F1000Prime).
[bibtex] [pdf]

  Power Scheduling for Wireless Sensor and Actuator Networks
C.J. Rozell and D.H. Johnson. In Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN), pp. 470–478, . (Acceptance rate 22%)
[bibtex] [pdf]

  All-optical nanoscale pH meter
S.W. Bishnoi, C.J. Rozell, C.S. Levin, M.K. Gheith, B.R. Johnson, D.H. Johnson and N.J Halas. Nano Letters, 6(8), pp. 1687–1692, .
[bibtex] [url]

  Analyzing the robustness of redundant population codes in sensory and feature extraction systems
C.J. Rozell and D.H. Johnson. Neurocomputing, 69(10–12), pp. 1215–1218, .
[bibtex] [pdf]

  Evaluating local contributions to global performance in wireless sensor and actuator networks
C.J. Rozell and D.H. Johnson. Lecture Notes in Computer Science, vol. 4026, pp. 1–16, . it Proceedings of the International Conference on Distributed Computing in Sensor Systems (DCOSS), San Francisco, CA, June 2006
[bibtex] [pdf]

  Examining methods for estimating mutual information in spiking neural systems
C.J. Rozell and D.H. Johnson. Neurocomputing, vol. 65–66C, pp. 429–434, .
[bibtex] [pdf]

  Measuring information transfer in crayfish sustaining fiber spike generators
C.J. Rozell, D.H. Johnson and R.M. Glantz. Biological Cybernetics, 90(2), pp. 89–97, .
[bibtex] [pdf]

  Information processing during transient responses in the crayfish visual system
C.J. Rozell, D.H. Johnson and R.M. Glantz. Neurocomputing, vol. 52–54, pp. 53–58, .
[bibtex] [pdf]


Conference Abstracts

 A Novel Subcallosal Cingulate Biomarker of Deep Brain Stimulation Mediated Stable Depression Recovery
S. Alagapan, S. Heisig, K.S. Choi, A. Waters, A. Veerakumar, V. Tiruvadi, M. Obatusin, T. Nauvel, J. Cha, A. Crowell, M. Figee, P. Riva Posse, R. Butera, H. Mayberg and C. Rozell. 93(9), pp. S271, . Proceedings of Society of Biological Psychiatry Annual Meeting
[bibtex]

 Decomposed linear dynamical systems for C. elegans functional connectivity
E. Yezerets, N. Mudrik, Y. Chen, A. Charles and C. Rozell. .
[bibtex]

 Characterizing the Stress-Reducing Effects of Non-Invasive Vagus Nerve Stimulation
A. H. Gazi, D Bremner, J. Hahn, C. J. Rozell and O. T. Inan. . Special session on Enabling Closed-Loop Technologies for Mental Health: Biobehavioral Sensor Informatics and Just-in-Time Interventions
[bibtex]

 Decomposed linear dynamical systems for C. elegans functional connectivity
E. Yezerets, N. Mudrik, Y. Chen, C. Rozell and A. Charles. .
[bibtex]

 CLOCTools: A library of tools for closed-loop neuroscience
A. Willats, M.F. Bolus, K. Johnsen, G.B. Stanley and C.J. Rozell. .
[bibtex]

 Bridging model and experiment with CLEOsim: a testbed for in-silico prototyping of complex neuroscience experiments
K. Johnsen, N. Cruzado, A. Willats and C.J. Rozell. .
[bibtex]

 A novel subcallosal cingulate biomarker of deep brain stimulation mediated stable recovery
S. Alagapan, S. Heisig, K.S. Choi, A. Waters, A. Veerakumar, V. Tiruvadi, M Obatusin, T.J. Nauvel, J. Cha, M. Figee, A.L. Crowell, P. Riva-Posse, R.J. Butera, H.S. Mayberg and C.J. Rozell. .
[bibtex]

 Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
N. Mudrik, Y. Chen, E. Yezerts, C.J. Rozell and A. Charles. . New Orleans, LA.
[bibtex]

 A novel subcallosal cingulate biomarker of deep brain stimulation mediated stable recovery
S. Alagapan, S. Heisig, K.S. Choi, A. Waters, A. Veerakumar, V. Tiruvadi, M Obatusin, T.J. Nauvel, J. Cha, M. Figee, A.L. Crowell, P. Riva-Posse, R.J. Butera, H.S. Mayberg and C.J. Rozell. .
[bibtex]

 Exploration of acute effects of stimulation frequency on subcallosal cingulate dynamics in SCC DBS
E.C. Fitoz, S. Alagapan, S. Heisig, K.S. Choi, A. Waters, A. Veerakumar, V. Tiruvadi, M Obatusin, T.J. Nauvel, J. Cha, M. Figee, A.L. Crowell, P. Riva-Posse, R.J. Butera, H.S. Mayberg and C.J. Rozell. .
[bibtex]

 Latent State-Space Modeling of Physiological Responses to Non-Invasive Vagus Nerve Stimulation and Traumatic Stress
A. H. Gazi, S. An, S. Natarajan, J. A. Sanchez-Perez, D Bremner, J. Hahn, O. T. Inan and C. J. Rozell. .
[bibtex]

 CLOCTools: A library of tools for closed-loop neuroscience
A. Willats, M.F. Bolus, K. Johnsen, N. Cruzado, G.B. Stanley and C.J. Rozell. .
[bibtex]

 Cleo: a simulation testbed for bridging model and experiment in mesoscale neuroscience
K. Johnsen, N. Cruzado, A. Willats and C.J. Rozell. .
[bibtex]

 Decomposed Linear Dynamical Systems (dLDS) for learning the latent components of neural dynamics
N. Mudrik, Y. Chen, E. Yezerts, C.J. Rozell and A. Charles. . Virtual meeting.
[bibtex]

 Latent State-Space Modeling of Physiological Responses to Non-Invasive Vagus Nerve Stimulation and Traumatic Stress
A. H. Gazi, S. An, S. Natarajan, J. A. Sanchez-Perez, D Bremner, J. Hahn, C. J. Rozell and O. T. Inan. .
[bibtex]

 Informing clinical decisions in psychiatric neuromodulation with AI
C.J. Rozell. . Orlando, FL and virtual meeting.
[bibtex]

 Learning the Data Manifold for Reusable Augmentations
K. Fallah, M. Connor and C. Rozell. .
[bibtex]

 Electrophysiological Biomarkers to Optimize DBS for Depression V
S. Alagapan, A. Aloysi, R. Butera, J. Cha, K. Choi, A. Crowell, M. Figee, R. Gross, S. Heisig, B. Kopell, H. Mayberg, T. Nauvel, M. Obatusin, S. O'Neill, P. Riva Posse, C. Rozell, A. Smith and A. Waters. .
[bibtex]

 Closed-Loop Computational Neuroscience for Causally Dissecting Circuits III
C. Rozell, G. Stanley, M. Bolus, A. Willats, K. Johnsen, A. Borsa and N. Cruzado. .
[bibtex]

  Oracle Guided Image Synthesis with Relative Queries
A. Helbling, C. Rozell, M. O'Shaughnessy and K. Fallah. .
[bibtex] [url]

 Local dynamics changes accompanying stable recovery in subcallosal cingulate deep brain stimulation for treatment-resistant depression
S. Alagapan, S. Heisig, P. Riva-Posse, H.S. Mayberg and C.J. Rozell. .
[bibtex]

 Closed-Loop Computational Neuroscience for Causally Dissecting Circuits II
C. Rozell, G. Stanley, M. Bolus, A. Willats and K. Johnsen. .
[bibtex]

 Electrophysiological Biomarkers to Optimize DBS for Depression IV
H. Mayberg, P. Riva Posse, C. Rozell, R. Butera, K. Choi, A. Waters, M. Figee, S. Alagapan, A. Crowell, R. Gross, S. Heisig, M. Obatusin, A. Smith, T. Nauvel and J. Cha. .
[bibtex]

 Electrophysiological Biomarkers to Optimize DBS for Depression - supplement: Longitudinal study of the effects of subcallosal cingulate deep brain stimulation for treatment-resistant depression on the power spectrum of the resting electroencephalogram
T. Nauvel, S. Alagapan, S. Heisig, C. Rozell, H. Mayberg and A. Waters. .
[bibtex]

 State-space optimal feedback control of neural circuits
M. Bolus, A. Willats, C. Whitmire, C. Rozell and G. Stanley. .
[bibtex]

 When are open- and closed-loop control necessary for causal inference in neural circuits?
A. Willats, M. O'Shaughnessy, K. Johnsen and C.J. Rozell. .
[bibtex]

 Closed-Loop Computational Neuroscience for Causally Dissecting Circuits
C. Rozell, G. Stanley, M. Bolus, A. Willats and K. Johnsen. .
[bibtex]

 Electrophysiological Biomarkers to Optimize DBS for Depression III
H. Mayberg, P. Riva Posse, C. Rozell, S. Alagapan, R. Butera, K. Choi, A. Crowell, B. Howell, B. Mahmoudi, M. Obatusin, R. Gross, M. Sendi, V. Tiruvadi, A. Veerakumar, A. Waters and P. Weiss. .
[bibtex]

 The PICASSO algorithm for Bayesian localization via paired comparisons in a union of subspaces model
G. Canal, M. Connor, J. Jin, N. Nadagouda, M. O'Shaughnessy, C. Rozell and M. Davenport. .
[bibtex]

 Unsupervised learning of manifold models for coding physical transformations
M. Connor and C.J. Rozell. .
[bibtex]

 A 17.8 MS/s Neural-Network Compressed Sensing Radar Processor in 16nm FinFET CMOS
P. Brown, M. O'Shaughnessy, C. Rozell, J. Romberg and M. Flynn. .
[bibtex]

 A change point decoder for sleep/wake detection on memory constrained wearables
A. Cakmak, G. Da Poian, A. Willats, A. Shah, V. Vaccarino, D. Bliwise, C.J. Rozell and G. Clifford. .
[bibtex]

 Parallel Unbalanced Optimal Transport Regularization for Imaging
J. Lee, N. Bertrand and C.J. Rozell. . Selected for Spotlight presentation.
[bibtex]

 Hierarchical Optimal Transport for Multimodal Distribution Alignment
J. Lee, M. Dabagia, E. Dyer and C.J. Rozell. .
[bibtex]

 A General ADMM Framework for Optimal Transport Regularized Problems
J. Lee, N. Bertrand and C.J. Rozell. .
[bibtex]

 Joint Estimation of Trajectory and Dynamics from Paired Comparisons
G. Canal, M. O'Shaughnessy, C. Rozell and M. Davenport. .
[bibtex]

 Dynamical System Implementations of Sparse Bayesian Learning
M. O'Shaughnessy, M. Davenport and C. Rozell. .
[bibtex]

 Electrophysiological features of subcallosal cingulate cortex in patients with treatment-resistant depression
S. Alagapan, V. Tiruvadi, M. Sendi, A. Waters, A. Veerakumar, M. Obatusin, A. Crowell, P. Riva Posse, R. Butera, H. Mayberg and C. Rozell. .
[bibtex]

 Sub second dynamics of theta gamma coupling in hippocampal CA1
L. Zhang, J. Lee, C. Rozell and A. Singer. .
[bibtex]

 Cluster-based Optimal Transport Alignment
J. Lee, E. Dyer and C.J. Rozell. . Selected for oral presentation.
[bibtex]

 Fast Numerical Methods for Convex Problems with Optimal Transport Regularization
J. Lee and C.J. Rozell. .
[bibtex]

 Robust Incorporation of Signal Predictions into the Sparse Bayesian Learning Framework
M. O'Shaughnessy, M. Davenport and C. Rozell. .
[bibtex]

 Active embedding search via noisy paired comparisons
G. Canal, A. Massimino, M. Davenport and C. Rozell. .
[bibtex]

 Natural Variation Transfer using Learned Manifold Operators
M. Connor, J. Culpepper, H. Nguyen and C. Rozell. .
[bibtex]

 Electrophysiological Biomarkers to Optimize DBS for Depression III
H. Mayberg, P. Riva Posse, C. Rozell, S. Alagapan, R. Butera, K. Choi, A. Crowell, B. Howell, B. Mahmoudi, M. Obatusin, R. Gross, M. Sendi, V. Tiruvadi, A. Veerakumar, A. Waters and P. Weiss. .
[bibtex]

 Interactive Object Segmentation With Noisy Binary Inputs
G. Canal, S. Manivasagam, S. Liang and C.J. Rozell. .
[bibtex]

 Rigorous guarantees on sequence memory capacity in recurrent neural networks using randomized dimensionality reduction
A. Charles, H.L. Yap, D. Yin and C. Rozell. .
[bibtex]

 Sparse Dynamic Filtering via Earth Mover’s Distance Regularization
N. Bertrand, J. Lee, A. Charles, P. Dunn and C.J. Rozell. .
[bibtex]

 State-aware control of neural activity: design & analysis
A. Willats, M. Bolus, C. Whitmire, G. Stanley and C. Rozell. .
[bibtex]

 An Optimal Transport Tracking Regularizer
J. Lee, A. Charles, N. Bertrand and C. Rozell. .
[bibtex]

 Earth-Mover's Distance as a Tracking Regularizer
A. Charles, N. Bertrand, J. Lee and C.J. Rozell. .
[bibtex]

 Controlling high-complexity robotic swarms with low-complexity EEG brain-machine interfaces
G. Canal, Y. Diaz-Mercado, M. Egerstedt and C. Rozell. .
[bibtex]

 Cell membrane tracking in live brain tissue with differential interference contrast (DIC) microscopy
J. Lee, I. Kolb, C. Forest and C. Rozell. .
[bibtex]

 The patcherBot: a Walk-away Automated Patch-clamp Electrophysiology System
I. Kolb, J. Lee, A Felouzis, C. Landry, M. Yip, C. Lewallen, W. Stoy, C. Rozell and C. Forest. .
[bibtex]

 Optimal E:I cell ratios in efficient coding models of V1 under volume constraints
A. Alreja, I. Nemenmen and C. Rozell. .
[bibtex]

 Closed loop optogenetic control of thalamocortical activity
M. Bolus, A. Willats, C. Whitmire, C. Rozell and G. Stanley. .
[bibtex]

 Fast ADMM Solver for Reweighted Total Variation Image Deconvolution and Inpainting
J. Lee and C.J. Rozell. .
[bibtex]

 Dynamic Filtering with Earth Mover’s Distance Regularization
A. Charles, J. Lee, N. Bertrand and C. Rozell. .
[bibtex]

 Compression of multiple input streams into recursive neural networks
A. Charles, D. Yin and C. Rozell. .
[bibtex]

 Stabilizing Embedology: Geometry-Preserving Delay-Coordinate Maps
C. Rozell, M. Wakin, H.L. Yap and A. Eftekhari. . Selected for oral presentation.
[bibtex]

 Active learning approaches for complex non-invasive brain-computer interfaces
C. Rozell. .
[bibtex]

 Stabilizing Embedology: When Do Delay-Coordinate Maps Preserve Geometry?
A. Eftekhari, H.L. Yap, M.B. Wakin and C. Rozell. . Invited
[bibtex]

 Closed-loop Optogenetic Control of Neural Circuits: Tracking dynamic trajectories of firing rate in vivo
M. Bolus, A. Willats, C. Whitmire, C. Rozell and G. Stanley. .
[bibtex]

 Precision Cell Boundary Tracking on DIC Microscopy Video for Patch Clamping
J. Lee and C.J. Rozell. .
[bibtex]

 Short-term Sequence Memory in Recurrent Networks
A. Charles, H.L. Yap, D. Yin and C. Rozell. .
[bibtex]

 Unsupervised learning of manifold models for neural coding of physical transformations in the ventral visual pathway
M. Connor and C. Rozell. .
[bibtex]

 Efficient Randomized Filtering for Dimensionality Reduction in Electrophysiology Data
N. Bertrand, H.L. Yap, A. Charles and C. Rozell. .
[bibtex]

 Closed Loop Optogenetic Control of Neural Circuits in vivo: Developing design principles for controlling patterns of neural firing rate
M. Bolus, A. Willats, C. Whitmire, Z. Costello, M. Egerstedt, C. Rozell and G. Stanley. .
[bibtex]

 Closed Loop Optogenetic Control of Neural Circuits in vivo: Developing Design Principles for Controlling Patterns of Neural Firing Rate
M. Bolus, A. Willats, C. Whitmire, Z. Costello, M. Egerstedt, C. Rozell and G. Stanley. .
[bibtex]

 Cortical communication via randomized dimensionality reduction with local synaptic connections
C. Rozell and N. Liu. .
[bibtex]

 Closed loop optogenetic control of neural circuits: Tracking dynamic trajectories of neural activity
M. Bolus, A. Willats, C. Whitmire, Z. Costello, M. Egerstedt, C. Rozell and G. Stanley. .
[bibtex]

 Learning manifold transport operators of 3D transformations from 2D imagery
C. Rozell and M. Norko. .
[bibtex]

 Closing the loop around firing rate: Following dynamic trajectories
A. Willats, M. Bolus, C. Whitmire, C. Rozell and G. Stanley. .
[bibtex]

 Learning a Dynamics Dictionary for Time-Varying Sparse Signals
A. Charles and C. Rozell. .
[bibtex]

 Restricting Vocabulary Size in Pediatric Augmentative and Alternative Communication
A. Moreno, C.J. Rozell and A. Howard. .
[bibtex]

 Convergence of Basis Pursuit De-noising with Dynamic Filtering
A. Charles and C.J. Rozell. .
[bibtex]

 Can Random Linear Networks Store Multiple Long Input Streams?
A. Charles, D. Yin and C.J. Rozell. .
[bibtex]

 A First Analysis of the Stability of Takens' Embedding
H.L. Yap, A. Eftekhari, M.B. Wakin and C.J. Rozell. .
[bibtex]

 The role of sparsity in visual perception
C. Rozell, M. Zhu, A. Charles, H.L. Yap and M. Norko. .
[bibtex]

 The influence of structure in binary mask estimation error on speech intelligibility
A. Kressner and C. Rozell. . Selected for oral presentation.
[bibtex]

 Sparsity Based Spectral Super-Resolution and Applications to Ocean Water Color
A. Charles, C. Rozell and N. Tufillaro. .
[bibtex]

 Iterative Soft-Thresholding for Time-Varying Signal Recovery
A. Balavoine, C.J. Rozell and J.K. Romberg. .
[bibtex]

 Coding consequences of activity propagation from sensory and artificial stimulation of neural circuits
D.C. Millard, C. Rozell and G.B. Stanley. .
[bibtex]

 Modeling single-trial V1 population response to dynamic natural scenes
M. Zhu and C. Rozell. .
[bibtex]

 Speech Understanding in Noise Provided by a Simulated Cochlear Implant Processor Based on Matching Pursuit
A. Kressner and C.J. Rozell. .
[bibtex]

  Convergence of a Neural Network for Sparse Approximation using the Nonsmooth Łojasiewicz Inequality
A. Balavoine, C.J. Rozell and J.K. Romberg. .
[bibtex] [pdf]

 Using compressed sensing to study sequence memory capacity in networked systems
A. Charles, H.L. Yap and C. Rozell. .
[bibtex]

 Stochastic Filtering via Reweighted-l1
A. Charles and C. Rozell. .
[bibtex]

 Speech separation using Matching Pursuit for time-frequency masking
A. Kressner and C. Rozell. .
[bibtex]

 A sparse coding model of V1 produces surround suppression effects in response to natural scene
A.P. Del Giorno, M. Zhu and C. Rozell. .
[bibtex]

 Sparse coding model captures V1 population response statistics to natural movies
M. Zhu, I. Stevenson, U. Koster, C. Gray, B. Olshausen and C. Rozell. .
[bibtex]

 Compressed Sensing Radar Using Recurrent Neural Networks
H.L. Yap, A. Charles and C. Rozell. .
[bibtex]

 Causal binary mask estimation for speech enhancement using sparsity constraints
A. Kressner, D.V. Anderson and C. Rozell. .
[bibtex]

  Dynamic Filtering of Sparse Signals Using Reweighted L1
A. Charles and C. Rozell. .
[bibtex] [pdf]

 A Novel Binary Mask Estimator Based on Sparse Approximation
A. Kressner, D.V. Anderson and C. Rozell. .
[bibtex]

 Sparse coding model and population response statistics to natural movies in V1
M. Zhu, I. Stevenson, U. Koster, C. Gray, B. Olshausen and C. Rozell. .
[bibtex]

 Compressive LADAR Detector Noise Performance
D. Sale, C.J. Rozell, J.K. Romberg and A.D. Lanterman. .
[bibtex]

  The Restricted Isometry Property for Echo State Networks with Applications to Sequence Memory Capacity
H.L. Yap, A. Charles and C.J. Rozell. .
[bibtex] [pdf]

 Compressive LADAR in Realistic Environments
D. Sale, C.J. Rozell, J.K. Romberg and A.D. Lanterman. .
[bibtex]

 Short Term Memory in Neural Networks via the Restricted Isometry Property
A. Charles, H.L. Yap and C.J. Rozell. . Invited talk.
[bibtex]

 Biologically realistic excitatory and inhibitory cell properties emerge from a sparse coding network
M. Zhu and C. Rozell. .
[bibtex]

 The Restricted Isometry Property for Block Diagonal Matrices
A. Eftekhari, H.L. Yap, C.J. Rozell and M.B. Wakin. .
[bibtex]

 The Restricted Isometry Property for Echo State Networks with Applications to Sequence Memory Capacity
H.L. Yap, A. Charles and C.J. Rozell. .
[bibtex]

 Short-Term Memory Capacity in Recurrent Networks via Compressed Sensing
A. Charles, H.L. Yap and C.J. Rozell. .
[bibtex]

 Biophysically accurate non-classical and inhibitory interneuron properties in a sparse coding network
M. Zhu and C.J. Rozell. .
[bibtex]

 Biophysically accurate inhibitory interneuron properties in a sparse coding network
M. Zhu, B. Olshausen and C. Rozell. .
[bibtex]

 Short-Term Memory Capacity in Recurrent Networks via Compressed Sensing
A. Charles, H.L. Yap and C.J. Rozell. .
[bibtex]

 A Scalable Implementation of Sparse Approximation on a Field Programmable Analog Array
S. Shapero, C. Rozell, A. Balavoine and P. Hasler. .
[bibtex]

  Robustness of the Hearing Aid Speech Quality Index (HASQI)
A. Kressner, D. Anderson and C. Rozell. .
[bibtex] [pdf]

 Computational auditory models validate the intelligibility benefits of "efficient filters"
A. Kressner, D. Anderson and C. Rozell. .
[bibtex]

 Stable Embeddings of Time Series Data
H.L. Yap and C. Rozell. .
[bibtex]

 Concentration Inequalities and Isometry Properties for Compressive Block Diagonal Matrices
H.L. Yap, J.Y. Park, A. Eftekhari, C.J. Rozell and M.B. Wakin. .
[bibtex]

 Learning sparse codes for hyperspectral images
A. Charles, B. Olshausen and C. Rozell. .
[bibtex]

 Convergence and Rate Analysis of Neural Networks for Sparse Approximation
A. Balavoine, J. Romberg and C.J. Rozell. .
[bibtex]

 A compressive sensing LIDAR architecture
D. Sale, C. Rozell, J. Romberg and A. Lanterman. .
[bibtex]

 Recent evidence of sparse coding in neural systems
C. Rozell and M. Zhu. .
[bibtex]

 Concentration Inequalities and Isometry Properties for Compressive Block Diagonal Matrices
H.L. Yap, J.Y. Park, A. Eftekhari, C.J. Rozell and M.B. Wakin. .
[bibtex]

 A Hierarchical Re-weighted-l1 Approach for Dynamic Sparse Signal Estimation
A. Charles and C. Rozell. .
[bibtex]

 Stable Embeddings of Time Series Data
H.L. Yap and C. Rozell. .
[bibtex]

 Compressive LIDAR Conceptual Model and Simulation Results
D. Sale, C. Rozell, J. Romberg and A. Lanterman. .
[bibtex]

  Estimation and Dynamic Updating of Time-Varying Signals With Sparse Variations
M.S. Asif, A. Charles, J. Romberg and C. Rozell. .
[bibtex] [pdf]

  Stable Manifold Embeddings with Operators Satisfying the Restricted Isometry Property
H.L. Yap, M.B. Wakin and C.J. Rozell. .
[bibtex] [pdf]

  The Restricted Isometry Property for Block Diagonal Matrices
H.L. Yap, A. Eftekhari, M.B. Wakin and C.J. Rozell. .
[bibtex] [pdf]

  Sparsity Penalties in Dynamical System Estimation
A. Charles, M.S. Asif, J. Romberg and C. Rozell. .
[bibtex] [pdf]

 Sparse approximation on a network of locally competitive integrate and fire neurons
S. Shapero, D. Brüderle, P. Hasler and C. Rozell. .
[bibtex]

 Population characteristics and interpretations of nCRF effects emerging from sparse coding
M. Zhu and C. Rozell. .
[bibtex]

 Global Convergence of the Locally Competitive Algorithm
A. Balavoine, C.J. Rozell and J.K. Romberg. .
[bibtex]

 Causal sparse decomposition of audio signals
A. Charles, A.A. Kressner and C.J. Rozell. .
[bibtex]

 Stable Takens' Embedding for Linear Dynamical Systems
H.L. Yap and C.J. Rozell. . Invited paper for session on \emphExploiting Sparsity and Compressive Sensing in System Identification.
[bibtex]

 Analog Sparse Approximation for Compressed Sensing Recovery
C.J. Rozell and P. Garrigues. .
[bibtex]

 Sparse Coding for Spectral Signatures in Hyperspectral Images
A. Charles and C.J. Rozell. .
[bibtex]

 Predicting speech quality using a computational auditory model
A. Kressner, C. Rozell and D. Anderson. .
[bibtex]

 Sparse coding models demonstrate some non-classical receptive field effects
M. Zhu and C. Rozell. . \textbfSelected for oral presentation.
[bibtex]

  Concentration of Measure for Block Diagonal Measurement Matrices
M.B. Wakin, J.Y. Park, H.L. Yap and C.J. Rozell. .
[bibtex] [pdf]

  Concentration of Measure for Block Diagonal Matrices With Repeated Blocks
C.J. Rozell, H.L. Yap, J.Y. Park and M.B. Wakin. . Invited paper
[bibtex] [pdf]

 Exploring the statistical structure of large-scale neural recordings using a sparse coding model
A. Khosrowshahi, J. Baker, R. Herikstad, S. Yen, C. Rozell and B. Olshausen. .
[bibtex]

  Distributed processing in frames for sparse approximation
C.J. Rozell. . Invited paper
[bibtex] [pdf]

 Reconstruction of compressively sensed images via neurally plausible local competitive algorithms
R.L. Ortman, C.J. Rozell and D.H. Johnson. pp. 476–479, .
[bibtex]

 Locally competitive algorithms for sparse approximation
C.J. Rozell, D.H. Johnson, R.G. Baraniuk and B.A. Olshausen. pp. 169–172, .
[bibtex]

  Modeling sensor networks with fusion frames
P. Casazza, G. Kutyniok, S. Li and C.J. Rozell. vol. 6701, pp. 67011M-1 – 67011M-11, .
[bibtex] [pdf]

 Neurally plausible sparse coding via competitive algorithms
C.J. Rozell, D.H. Johnson, R.G. Baraniuk and B.A. Olshausen. .
[bibtex]

 Information Theory and Neuroscience: A Tutorial
D.H. Johnson, C.J. Rozell and I.N. Goodman. .
[bibtex]

 All-optical nanoscale pH meter: a plasmonic nanodevice with quantifiable output
S.W. Bishnoi, C.S. Levin, C.J. Rozell, B.R. Johnson, D.H. Johnson and N.J Halas. . Invited paper
[bibtex]

 Sparse Coding via Thresholding and Local Competition
B.A. Olshausen, C.J. Rozell, D.H. Johnson and R.G. Baraniuk. .
[bibtex]

 Information Theory and Neuroscience
D.H. Johnson and C.J. Rozell. .
[bibtex]

  Feature-based information processing with selective attention
C.J. Rozell, I.N. Goodman and D.H. Johnson. .
[bibtex] [pdf]

  Analysis of noise reduction in redundant expansions under distributed processing requirements
C.J. Rozell and D.H. Johnson. pp. 185–188, .
[bibtex] [pdf]

  To cooperate or not to cooperate: Detection strategies in sensor networks
M.A. Lexa, C.J. Rozell, S. Sinanović and D.H. Johnson. pp. 841–844, .
[bibtex] [pdf]

 Matched filter performance for unequal target and background covariance matrices
C.J. Rozell and D. Manolakis. pp. 109–117, .
[bibtex]

  A theoretical framework for electro-acoustic music
M. Simoni, B. Broening, C. Rozell, C. Meek and G. Wakefield. .
[bibtex] [pdf]


Book Chapters

 Information Theory and Systems Neuroscience
D.H. Johnson, I.N. Goodman and C.J. Rozell. Chapter in Analysis of parallel spike trains (S. Grün, S. Rotter, eds.), Springer-Verlag, .
[bibtex]


Other Publications

 New data-driven electrophysiology outcome measures and insights into SCC DBS for depression DBS Think Tank IX, . Orlando, FL and virtual meeting.
[bibtex]

  On the Relation between Block Diagonal Matrices and Compressive Toeplitz Matrices
H.L. Yap and C.J. Rozell. Technical report, Georgia Institute of Technology, School of Electrical and Computer Engineering, .
[bibtex] [pdf]

  Distributed redundant representations in man-made and biological sensing systems
C.J. Rozell. Ph.D. thesis, Rice University, .
[bibtex] [pdf]

  Analyzing dynamics and stimulus feature dependence in the information processing of crayfish sustaining fibers
C.J. Rozell. M.S. thesis, Rice University, .
[bibtex] [pdf]