
Abstract. We present a method based on information-
theoretic distances for measuring the information trans-
fer efficiency of voltage to impulse encoders. In response
to light pulses, we simultaneously recorded the EPSP and
spiking output of crayfish sustaining fibers. To measure
the distance between analog EPSP responses, we devel-
oped a membrane noise model that accurately captures
stimulus-induced nonstationarities. By comparing the
EPSP and spike responses, we found encoding efficiencies
on the order of 10�4, with interesting dynamics occurring
during initial transients. A simple analog to point-
process converter predicted the small information trans-
fer efficiencies and dynamic properties we measured.

1 Introduction and background

Most sensory systems convert an essentially analog
representation of an external stimulus into a spike train
representation that is used in higher-level processing. A
step toward understanding the processing performed in
sensorineural systems is quantifying the information
efficiency of the voltage to impulse encoder performing
this conversion. In this work we present methods for
measuring the information transfer efficiency of a
voltage to impulse encoding mechanism and illustrate
these methods by analyzing a unit from the early visual
pathway of the crayfish.

1.1 Data collection in the crayfish visual pathway

The retina of the crayfish compound eye has groups of
photoreceptors organized in ommatidia. The receptor
axons project to lamina ganglion cells, and these project

in columnar fashion to interneurons in the medulla
externa. These retinotopically organized interneurons
synapse on sustaining fiber (SF) dendrites. The 14
distinct SFs have input EPSPs closely resembling graded
and delayed versions of summed photoreceptor activity
over a segment of the visual field (Kirk et al. 1983;
Waldrop and Glantz 1985). The SFs are most likely the
first stage where an analog (EPSP) signal representing an
external visual stimulus is converted into a spike train.
Thus, the SFs represent a ‘‘front end’’ for information
processing in higher centers of the brain. This is
illustrated schematically in Figs. 1 and 2.

Both SF input EPSPs and output spike trains exhibit
transient and steady-state behavior proportional to
stimulus intensity (Kirk et al. 1982; Wiersma and
Yamaguchi 1966). To examine the information transfer
efficiency of the SF voltage to impulse encoder during the
transient and steady-state response segments, dark-
adapted crayfish are repeatedly presented with a sudden-
onset stimulus having intensity values chosen from a
predetermined set. The strong spike responses generated
in the SF are involved in controlling an eyestalk reflex
(Miller et al. 2002, 2003). The stimuli therefore induce an
information-bearing response in the SF that is biologi-
cally relevant. Intracellular SF recordings are made
during stimulus presentationwith amicroelectrode placed
near the spike-initiating zone. The SF is tested with a
range of stimulus values, and data collection begins when
we ascertain that the responses are adapted to the stimu-
lus. Data collection experimental methods are described
in Kirk et al. (1982, 1983) and Waldrop and Glantz
(1985). The intracellular recordings are a composite of the
EPSP and the resulting spike train, which are separated
using amethod based on wavelet denoising (Rozell 2002).

1.2 A theory of information processing

We would like to understand the transmission of
stimulus information from the EPSP to the impulse
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train. Many standard signal processing techniques
cannot be applied to this problem because of the
disparity between the analog input and the spike train
output. However, a recent theory quantifies a system’s
information processing capabilities regardless of the
form of its input and output signals (Johnson et al. 2000,
2001; Sinanović and Johnson 2004, manuscript in
preparation). This information processing theory is the
basis of the current analysis, and we summarize it here.

Information (such as a stimulus light intensity
parameter) is conveyed by a stochastic signal with a
probability law that depends on the exact information
value. Stimulus parameters are expressed by the vector
a, and the stochastic analog EPSP representing that
stimulus is given by Xa. Here Xa is distributed according
to pa, a probability function that depends on a. The SF
voltage to impulse encoder takes Xa as input and pro-
duces the stochastic spike train Ya (governed by a
probability law qa) as output. We would like to compare
the amount of information about a that can be extracted
from the input and output signals. We quantify the
amount of information a signal contains with regard to a
specific stimulus feature by inducing controlled changes
in the value of a and measuring the changes in Xa and Ya

(reflecting the differing information content). Given two
different values of stimulus parameter a, we compute the
Kullback-Leibler (KL) distance (Cover and Thomas
1991) between the probability distributions describing
the EPSPs under a0 and a1,

KLXða1; a0Þ ¼
Z

pa1ðxÞ log2
pa1ðxÞ
pa0ðxÞ

dx ; ð1Þ

having units of ‘‘bits’’. The KL distance is generally
asymmetric, which presents problems in an experimental
setting.1 A symmetrized extension called the resistor-
averaged KL (RKL),

RKLXða1; a0Þ ¼
KLXða0; a1ÞKLXða1; a0Þ

KLXða0; a1Þ þKLXða1; a0Þ
; ð2Þ

is computed at both the SF’s input and output. The KL
distance can be related to the performance of both
optimal detectors and estimators (Johnson et al. 2001).

The RKL distance (as well as the KL distance) sat-
isfies the data processing inequality (Cover and Thomas
1991), which states that

RKLXða1; a0Þ � RKLYða1; a0Þ : ð3Þ

In other words, while systems can convert a signal from
one form to another, no amount of processing can
increase the signal’s fidelity in representing a. Given a
change in stimulus parameter a, the ratio of the distance
at the output to the distance at the input,

cX;Yða0; a1Þ ¼
RKLYða0; a1Þ
RKLXða0; a1Þ

; ð4Þ

quantifies the amount of information about a that was
suppressed by the system. From the data processing
inequality (3) it follows that 0 � cX;Y � 1, where a value
of 1 represents perfect information transfer of the
change in a from input to output, and a value of zero
means all information about a was suppressed.

An information processing analysis (based on KL
distances) is fundamentally different from an analysis
using mutual information or capacity (Cover and Tho-
mas 1991). KL distances are directly related to the
(asymptotic) exponential error decay rate of optimal
detectors and the performance of optimal mean-squared
error estimators operating on the input and output sig-
nals. The KL distance is very general, and a KL-based
analysis does not assume linearity or Gaussianity.
However, in the Gaussian case the KL distance corre-
sponds exactly to the Fisher discriminant. The ratio of
KL distances can be directly related to the relative per-
formance loss of optimal systems processing the input
and output signals. In contrast, mutual information is a
measure of statistical dependence and has no direct
relation to extracting information from signals. Mutual
information and capacity have completely different
interpretations in the framework of digital communica-
tions (Shannon and Weaver 1949) or rate-distortion
theory (Berger 1971). Examples show that the ratio of
KL distances (cX;Y) can be arbitrarily different from
mutual information, and thus they are not related in
general. A complete description of this information
processing theory can be found in Sinanović and
Johnson (2004, manuscript in preparation).

2 Estimating RKL distances

SFs have spike train outputs, and an information
processing analysis requires RKL distance calculations
between spike train probability laws under two different
stimulus conditions. Johnson et al. (2001) presented a
method for estimating RKL distances using spike
responses. To summarize, spike responses to a period-
ically repeated stimulus are binned (10-ms bins assure

Fig. 1. Functional schematic of the crayfish
visual pathway. More anatomical details
(including a sketch) can be found in Kirk
et al. (1982)

Fig. 2. The SF voltage to impulse encoder has an analog EPSP input
(Xa) and a spike train output (Ya) that both depend on the value of the
input stimulus (a)

1Note that the common terminology ‘‘KL distance’’ does not
imply that it is a metric.
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that most SF bins have only one event), and the
probability of events occurring in each bin is estimated
for both stimulus conditions. If the bins are indepen-
dent, the total RKL distance between the responses is
the sum of the RKL distances calculated for each
individual bin. A Markov dependence structure between
bins can be included but requires exponentially more
data. The datasets available are not large enough for
reliable estimates when including Markov dependence,
so we assume independent bins. This quantity approx-
imates, but does not bound, the true distance (including
interbin dependencies). We have verified that the
independent bin assumption introduces insignificant
error by calculating spike RKL distances assuming
first-order Markov dependence on both larger SF
datasets and simulated data with the same first-order
statistics as the SF spike responses. In the worst case
(using the simulated data), we observe an increase of a
factor of two in the estimated RKL when including
interbin dependence. This error will prove to be
insignificant given the order of magnitude of our
measurements. Spike response RKL distance estimates
can be considerably biased. The bootstrap (Hall 1992), a
statistical resampling technique, has been used success-
fully to remove bias and calculate confidence intervals in
spike response RKL estimates (Gruner 1998; Johnson
et al. 2001).

We also need to estimate the RKL distance between
probability laws governing the analog EPSP inputs. The
compound EPSP input signal (measured near the inte-
gration region of the SF) is a sum of many individual
EPSP events initiated in the dendritic tree. These indi-
vidual events are the direct result of neurotransmitter
release in the synapse, which is a quantal process. The
quantal events have a sudden onset with a relatively
quick decay, and the sum can be conceptualized as ‘‘shot
noise’’ (Papoulis 1965). Asymptotically, the sum of
many such individual EPSP ‘‘shots’’ is a Gaussian ran-
dom process. We verified the marginal normality by
applying a Kolmogorov-Smirnov-type goodness-of-fit
test (Conover 1980) to a segment of recorded data from
the resting SF membrane.2 Data samples passed with a
significance level of at least 0.01.

Using Gaussian random vector assumptions for
sampled EPSPs under two stimulus conditions,
Xa0 � Nðla0

;KÞ and Xa1 � Nðla1
;KÞ, the RKL is

RKLXða0; a1Þ ¼
ðla1
� la0

ÞtK�1ðla1
� la0

Þ
4

: ð5Þ

The mean vectors (la0
and la1

) and covariance matrix
(KÞ are needed to estimate the input distance. We
estimate the mean vector la for each stimulus condition
by averaging EPSP responses. Estimating K (the corre-
lation structure of the membrane noise) presents signif-
icant difficulties, particularly because the membrane
typically has time-varying characteristics. Direct estima-

tion of the sample covariance matrix is not desirable
because the datasets are small compared to the size of K.
To estimate the distance between two EPSP responses,
we examine a membrane noise correlation model based
on membrane physiology.

2.1 Membrane noise correlation

The primary neural structures contributing to EPSP
formation are functionally analogous to electrical com-
ponents, leading naturally to neurophysiologic circuit
models. The resting membrane has a characteristic
conductance Gmemð Þ, and an EPSP occurs when post-
synaptic ligand-gated ion channels open, increasing the
synaptic conductance GsynðtÞ

� �
. The net membrane

conductance is the sum of the synaptic and resting
membrane conductances, GðtÞ ¼ GsynðtÞ þ Gmem. The ion
channel ensembles are modeled as a membrane resistor
and a synaptic variable resistor in parallel with a
membrane capacitor. The circuit model for the mem-
brane is the first-order RC lowpass filter shown in
Fig. 3. Conductance increases responsible for EPSP
generation have been measured in crayfish SFs by
Waldrop and Glantz (1985). Resting membrane con-
ductances and membrane capacitances for the SF units
can be derived from the RC model, the results of
Waldrop and Glantz (1985), and the empirically mea-
sured membrane time constant (15–25ms). The active
membrane acts as a lowpass filter with a time-varying
pole at �GðtÞ=Cmem (Siebert 1986). RC circuit models
and the underlying neural processes are continuous-time
systems. However, during data collection the true
membrane activity is sampled and all data processing
must be done in discrete time. We use the impulse
invariance method (Oppenheim et al. 1999) to convert
the RC circuit model in Fig. 3 to an approximately
equivalent single-pole, discrete-time filter.

A sampled version of the time-varying conductance
GðnÞ is determined according to the relationship mea-
sured in Waldrop and Glantz (1985) using the EPSP
value at time step n and the membrane resting conduc-
tance. Using the impulse invariance method, the time-
varying, discrete-time pole locations aðnÞ are given
according to the equation aðnÞ ¼ expf�GðnÞ=ðCmemFsÞg,
where Fs is the sampling frequency (103 Hz in our case)
(Rozell 2002). An example EPSP is shown in Fig. 4,
along with the time-varying net membrane resistance
RðnÞ ¼ 1=GðnÞ and the corresponding pole location aðnÞ.

Fig. 3. The neural membrane is modeled as a first-order RC circuit,
where Vmem is the membrane voltage, Gmem the resting membrane
conductance, Gsyn the variable synaptic conductance, and Cmem the
membrane capacitance

2The resting membrane has no significant EPSP signal present,
and the corresponding static synaptic conductance provides the
most stationary data sample we can observe.
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The nonstationary, discrete-time system is described by
the difference equation

yðnÞ ¼ aðnÞyðn� 1Þ þ xðnÞ : ð6Þ

The discrete-time system in (6) has a unit-sample
response given by

hðn; kÞ ¼
Yn

l¼kþ1
aðlÞuðn� kÞ

 !
þ dðn� kÞ ; ð7Þ

where uðnÞ is the unit-step function and hðn; k)3 is the
response of the system at time step n to dðn� kÞ, a unit
sample at time step k. The nonstationary system
described by (7) is the basis for a SF membrane noise
model used in estimating EPSP RKL distances. Artifi-
cial membrane noise generated using the present model
appears to contain the dominant spectral characteristics
observed in the EPSP data.

2.2 Model-based EPSP RKL calculation

The unit sample response given in (7) can be used to
calculate the term in the n-th row and m-th column of
the membrane noise covariance matrix,

Kðn;mÞ ¼ r2 1� a2
0

� �

�
"
dðm� nÞ þ

Yn

k¼mþ1
aðkÞ

 !
þ

Ym
r¼nþ1

aðrÞ
 !

þ
X1
l¼1

Yn

k¼n�lþ1
aðkÞ

Ym
r¼n�lþ1

aðrÞ
 !#

; ð8Þ

where r2 and a0 are estimates of the colored noise
variance and pole location of the resting membrane.
More details on (8) are given in Appendix 4, and a
complete derivation can be found in Rozell (2002).

The membrane noise model leads to a simple algo-
rithm for calculating EPSP RKL distances. Under each
stimulus condition, we averaged the EPSP responses to
find the mean signal la. The resting membrane con-
ductance Gmem determines the resting membrane pole
location, a0. We used a resting segment of the EPSP
recording to estimate the noise variance, r2. During
active membrane periods, we used the mean EPSP
deflection signal to calculate the values of GðnÞ accord-
ing to the relationship measured in Waldrop and Glantz
(1985) and using the membrane resting conductance
(Gmem). The membrane capacitance Cmem and the time-
varying membrane conductance GðnÞ are used to find
the time-varying pole location aðnÞ using the impulse
invariance method. Having aðnÞ, a0, r2, and the corre-
lation function Kðn;mÞ in (8), we formed an estimate of
the covariance matrix K. Using mean EPSP signals
(la0

; la1
) and covariance matrix K, we estimate the RKL

distance between input responses according to (5).

3 Data analysis

We applied the EPSP and spike train RKL estimation
methods described in Sect. 2 to data collected from
crayfish SFs. The ratio of RKL estimates are calculated
for SFs responding to a range of stimulus values. The
dataset consists of responses to sudden-onset stimuli with
log intensity values chosen from the set LI1 ¼
f�3:5;�3:0;�2:5;�2:0;�1:5;�1:0g, ordered from
weakest to strongest. A single trial consists of a dark
adapting period followed by a suddenly applied static
stimulus covering the SF receptive field. In this prepara-
tion, the membrane capacitance and resting conductance
were determined to be 1.45 nF and 1=ð8:0MX), respec-
tively. Mean EPSP deflection signals elicited from the
stimuli are shown in Fig. 5. The EPSPs exhibit quick
positive deflections at stimulus onset, withmagnitude and
slope increasing with stimulus intensity. The transient
lasts approximately 150ms, followed by a decay to a
steady state. The spike response poststimulus time (PST)
histograms elicited from the stimuli are shown in Fig. 6.
The spike responses also exhibit transient and steady-state
behavior with an initial burst of spikes followed by a drop
to relatively constant rates.

Cumulative RKLs are estimated using input and
output responses for all possible pairs of stimuli condi-
tions in the dataset. Figure 7 shows the cumulative input
EPSP RKL distances for all possible pairs of stimuli. A
few general trends are worth noting. As expected, stimuli
pairs farther apart in intensity (signified by plots more
toward the lower left corner of Fig. 7) tend to produce
responses that have a larger total EPSP RKL distance
than pairs closer together. Cumulative EPSP RKLs also
generally show two distinct time segments: a large RKL
accumulation rate during the transient response and a
smaller RKL accumulation rate over the steady-state

Fig. 4. Shown in the top panel is an example SF EPSP deflection from
a sudden onset stimulus. In this example, the resting membrane has a
conductance of Gmem ¼ 1=8MX and a capacitance of C ¼ 1:45 nF.
The time-varying resistance RðnÞ ¼ 1=GðnÞ generating the EPSP is
shown in the middle panel. The resulting time-varying pole location
aðnÞ of the equivalent discrete-time system is shown in the bottom
panel

3It is important to note a notation convention. The product
operator is defined to be zero for any terms where the lower index
exceeds the upper index,

Qb
l¼a xðlÞ ¼ 0; a > b.
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response. The difference in RKL accumulation rates is
observed in the large slope of the cumulative RKL plot
during the first 100 ms, followed by a much smaller slope
during the remaining response. For example, the stim-
ulus pair fa0 ¼ �1:0; a1 ¼ �3:5g shows a large EPSP
RKL accumulation rate of roughly 5� 105 bits/s during
the transient response and 4� 104 bits/s during the
remaining response. The EPSP RKL accumulation rates
are more than an order of magnitude different during
the transient and steady-state time segments in this
example.

Similarly, output (spike train) cumulative RKL dis-
tances for all possible stimuli pairs are shown in Fig. 8.
Cumulative spike RKLs tend to show roughly the same
transient and steady-state behavior as cumulative EPSP
RKLs. The difference immediately evident is the scale:

the spike RKLs are four orders of magnitude smaller
than the EPSP RKLs. The fa0 ¼ �1:0; a1 ¼ �3:5g
stimulus pair shows spike RKL accumulation rates of
roughly 50 bits/s during the transient response and
4 bits/s during the remaining response. Again, the dif-
ference between transient and steady-state spike RKL
accumulation rates is roughly one order of magnitude.
However, the spike RKL accumulation rates are four
orders of magnitude smaller than the EPSP RKL
accumulation rates.

The time-varying ratio of spike train and EPSP
cumulative RKLs (cX;Y) for all possible stimuli pairs are
shown in Fig. 9. Error bars are plotted using the EPSP
RKL estimates and spike RKL estimate error bars. We
cannot directly calculate error bars for the EPSP RKL
estimates (and consequently for the information transfer
ratio estimates) because of the estimator complexity.
Therefore, the error bars shown are a lower limit for the
true error bar width. The most significant time-varying
trend in cX;Y is the tendency to peak sharply during the
transient SF response and decay to a relatively constant
value. These peaks appear more pronounced for small
changes in the stimulus value, and the peaks can be
nearly an order of magnitude greater than the steady-
state values. The steady-state ratio of RKLs values are
relatively invariant to the size of the stimulus change,
always yielding a final value in the range (0.6–2)�10�4.

3.1 Theoretical analog to point-process converter

The preceding analysis illuminated some general trends:
very low values of cX;Y and time-varying information
processing capabilities. In SF spike responses, the initial
transient rates cannot be explained by a simple scaling of
the EPSPs. Sudden EPSP changes also play a role in
increasing the discharge rate. To explore the role of ideal
systems converting analog signals into point processes,
we use a simple time-varying model that takes a
Gaussian random process eX ðtÞ and produces a Poisson
process eY ðtÞ with intensity function

kðtÞ ¼ AeX ðtÞ þ B
deX ðtÞ
dt

: ð9Þ

The relationship in (9) has the same form as the equation

for the current through an RC model of the membrane

ðIðtÞ ¼ GX ðtÞ þ C dX ðtÞ
dt Þ, with A and B as steady-state and

transient scaling constants. Equation (9) is not meant to
model spike generation in any biological system but is
simply an ideal analog to point-process converter (i.e.,
lossless except for the inherent noise in the point
process).

The probability of event counts in a time bin
0 � t � T depends on the integral of the intensity func-

tion over that bin, Kð0; T Þ ¼
R T
0 kðtÞdt. Because eX ðtÞ is a

Gaussian random process, Kð0; T Þ is a Gaussian random
variable. Given input random processes, the probability
mass functions for event counts in the bin 0 � t � T and
the resulting output RKL distance can be computed. A
complete derivation of the density of eY ðtÞ can be found

Fig. 5. Mean EPSP deflections in a SF responding to sudden-onset
stimuli of different log intensities (with 90% confidence intervals)

Fig. 6. Poststimulus time (PST) histograms for the SF responding to
sudden-onset stimuli of different log intensities (with 90% confidence
intervals generated using the bootstrap procedure, Hall 1992)
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in (Rozell 2002). Using a sample pair of SF responses,
we selected values of A and B that roughly predict SF
discharge rates. Though (9) is not meant to model SF
spike generation, it allows an exploration of a simple
system with input signal-to-noise ratios and output
event rates in the same range as the SF. The information
processing characteristics of the system in (9) are shown
in Fig. 10. The transient peak seen in the SF analysis is
also present with our simple analog to point-process
converter. Even though both input and output RKLs
exhibit transient and steady-state behavior, it is not
necessary that systems with time-varying behavior
will automatically exhibit time-varying information

processing capabilities. To illustrate, the same theoreti-
cal analysis was repeated setting B ¼ 0. The resulting
input and output cumulative RKLs still show transient
and steady-state behavior, though less pronounced in
the output RKL. The time-varying ratio of RKLs is
more constant and does not show a large obvious peak
followed by a decay to a steady-state value.

4 Conclusions

The SF information processing characteristics are sur-
prising because of their very low values. In this analysis,

Fig. 7. SF input (EPSP) cumulative RKL
distances for all stimuli pairs. The outer axes
denote the log intensity values of the stimuli
that elicited the responses (a0 and a1). The
inner axes show the cumulative EPSP RKL
distance for a particular stimuli pair. The
y-axis of the inner plots is RKL=104 (units of
bits)

Fig. 8. SF output (spike) cumulative RKL
distances for all stimuli pairs. The outer axes
denote the log intensity values of the stimuli
that elicited the responses (a0 and a1). The
inner axes show the cumulative spike RKL
distance for a particular stimuli pair. The
y-axis of the inner plots is resistor-averaged
RKL distance (units of bits). Error bars (90th
percentile) estimated using the bootstrap
procedure are shown as dotted lines
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cX;Y ranged between 10�4 and 10�3, reaching the largest
values during transient responses. These results depend
on the specific stimulus condition used in the analysis.
The present stimulus is biologically relevant and
generates an information-bearing response in the SF.
Additionally, the same analysis has been carried out
using other stimulus features and the results were never
higher than 10�2 (Rozell 2002). As described in Sect. 1.2,
0 � cX;Y � 1, with a value of zero representing total

information loss about the stimulus change. The large
decrease in information content we measured is coun-
terintuitive as a system design, where we generally want
to minimize unrecoverable loss in the early stages. As
always, the accuracy of data analysis is limited by
underlying assumptions and the amount of available
data. The need for more data is evident in the size of the
error bar lower bounds, but the order of magnitude of
cX;Y is clear. Our significant assumptions are the
Gaussianity of the EPSP noise and independent bins in
the spike response. We statistically verified the marginal
normality of the EPSP noise in stationary segments and
detailed the nonstationarities during EPSP activity.
Using simulated data with the same first-order interbin
dependencies as the SF data, we find that we underes-
timate the true spike RKL by a factor of two by
assuming independent bins. This factor does not change
the order of magnitude of our results.

It is imperative to remember that cX;Y measures
information present in the spike train output relative to
information available in the EPSP input. Despite the low
values measured for the SF information transfer
efficiency for this stimulus, we know that the stimulus
induces an information-bearing response in the SF and
enough information is extracted from that response to
mediate an eyestalk reflex. There may be enough infor-
mation in the spike train output to make basic differ-
entiations of the stimulus, but the present consideration
is how well those decisions could be made by observing
the EPSP inputs instead. In other words, how efficient
is the SF voltage to impulse encoder at communicating
the information contained in the EPSP? The results
are striking and raise a significant question: Is the
high-fidelity EPSP overdetermined for the information
conveyed at the output, or are there stimulus conditions
in which the output might better reflect the fidelity of the
input signal? When investigating the theoretical analog
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Fig. 9. SF time-varying ratios of RKL dis-
tances (cX;Y) for all stimuli pairs. The outer
axes denote the stimulus values that elicited
the responses (a0 and a1). The inner axes
show cX;Y for a particular stimuli pair as a
function of time. The y-axis of the inner plots
is the cX;Y in multiples of 10�4 (c=10�4) and is
dimensionless

Fig. 10. Information processing characteristics of a simple time-
varying system. The input processes are an example pair of EPSP
responses from SF recordings. Their cumulative RKL distances are
shown in the top panel. The middle panel shows the cumulative RKL
for the simple theoretical spike generator output. The bottom panel
shows the time-varying ratio of RKL distances (cX;Y) for the
theoretical system. The solid line denotes results from the intensity
function in (9), and the dotted lines represent results when B ¼ 0
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to point-process converter in Sect. 3.1, spike rates
comparable to SF rates produced comparable informa-
tion processing characteristics, and increasing the spike
rate increased cX;Y proportionally. Thus, spike rates
limit the fidelity of voltage to impulse encoders. The
stimuli used in this analysis produced discharge rates
that are too low to convey the vast amount of stimulus
information contained in the (high SNR) analog EPSPs.
We conclude that the crayfish SF may be severely limited
in its information processing capabilities by the low
spike rates typically produced.

In another study (Juusola and French 1997), the
‘‘information efficiency’’ from EPSP to spike train in a
spider slit-sense mechanoreceptor neuron was found to
be �14%. There, efficiency is measured as a ratio of
capacities from one stage to another. As stated in
Sect. 1.2, analyses based on RKL distances and capac-
ities are not comparable in general. Capacity cannot be
directly related to information extraction performance
metrics as can the KL distance. Therefore, even though
our results differ by at least an order of magnitude, their
results are not inconsistent with the analysis presented
here. Indeed, the responses in Juusola and French (1997)
appear to have SNRs and spike rates comparable to
those of the crayfish SF, and if our analysis were carried
out on their data, the results would be of the same order
of magnitude as we calculated in the crayfish SF.

Plotting cX;Y as a function of time revealed an inter-
esting trend in the dynamic SF information processing
capabilities. The encoding efficiency generally increases
immediately after stimulus onset, followed by a slow
decrease to steady-state values. The peak could be as
much as an order of magnitude larger than the sustained
value. Crayfish ocular reflexes to sudden-onset visual
stimuli can be completed within about 400ms after the
transient spike response (Miller et al. 2002). Accounting
for the latency inmotor neurons andmuscle contractions,
the stimulus information conveyed in the reflex behavior
must be communicated through the SF within 300ms
after stimulus onset.Reflex behavior therefore depends on
the transient spike response, which corroborates the ob-
served time-varying SF information processing charac-
teristics. The amount of information being transmitted
about a stimulus from input to output may have overall
low values, but the SF is communicating the majority of
that information during the transient response.

The SF information processing capabilities appear to
be limited in part by the discharge rates present at the
output, which clearly depend on the value of the input
EPSP X ðtÞð Þ. The performance increase during the
transient response may be because of significant firing
rate increases due to a dependence on changes in the
EPSP

� dX ðtÞ
dt

�
. The same behavior was observed with the

simple analog to point-process converter described in
Sect. 3.1 when the outputs were explicitly dependent on
recent changes in the input. The dynamic information
processing characteristics are not evident when the
output only depends on the current input value. With
dependence only on the present input value (X ðtÞ)
and not on its derivative

� dX ðtÞ
dt

�
, the system would

transfer information about stimulus changes with the

same efficiency as it transfers information about sus-
tained values. The transient nature of cX;Y is consistent
with a system meant to encode stimulus changes more
efficiently than absolute stimulus values.

Appendix

Correlation structure of a nonstationary system

The membrane noise component of the SF EPSP is
conceptualized as the output of the system shown in
Fig. 3 responding to white noise input wðkÞ � N 0; r2

w

� �
.

The unit-sample response describing the time-varying
membrane is given in (7) as

hðn; kÞ ¼
Yn

l¼kþ1
aðlÞuðn� kÞ

 !
þ dðn� kÞ :

The membrane noise can therefore be written explicitly
as

X ðnÞ � lðnÞð Þ ¼
Xn

k¼�1
hðn; kÞwðkÞ

¼ wðnÞ

þ
X1
l¼1

Yn

k¼n�lþ1
aðkÞwðn� lÞ

 !
; ð10Þ

where X � Nðl;KÞ. Substituting (10) into the definition
of the covariance matrix, the expression for the element
in the n-th row and m-th column reduces to

Kðn;mÞ ¼ E X ðnÞ � lðnÞð Þ X ðmÞ � lðmÞð Þ½ �

¼ r2
w

"
dðm� nÞ

þ
Yn

k¼mþ1
aðkÞ

 !
þ

Ym
r¼nþ1

aðrÞ
 !

þ
X1
l¼1

Yn

k¼n�lþ1
aðkÞ

Ym
r¼n�lþ1

aðrÞ
 !#

:

If the pole is stationary at a0, then
r2 ¼ E½ X ðnÞ � lðnÞð Þ2� ¼ r2

w=ð1� a20Þ. We estimate r2
w

from measurements of r2 and a0 in the resting mem-
brane.
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