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ABSTRACT

Distributed Redundant Representations in
Man-made and Biological Sensing Systems

by
Christopher J. Rozell

The ability of a man-made or biological system to understand its environment
is limited by the methods used to process sensory information. In particular, the
data representation is often a critical component of such systems. Neural systems
represent sensory information using distributed populations of neurons that are highly
redundant. Understanding the role of redundancy in distributed systems is important
both to understanding neural systems and to efficiently solving many modern signal
processing problems.

This thesis makes contributions to understanding redundant representations in
distributed processing systems in three specific areas. First, we explore the robustness
of redundant representations by generalizing existing results regarding noise-reduction
to Poisson process modulation. Additionally, we characterize how the noise-reduction
ability of redundant representation is weakened when we enforce a distributed pro-
cessing constraint on the system.

Second, we explore the task of managing redundancy in the context of dis-
tributed settings through the specific example of wireless sensor and actuator net-
works (WSANs). Using a crayfish reflex behavior as a guide, we develop an analytic
WSAN model that implements control laws in a completely distributed manner. We
also develop an algorithm to optimize the system resource allocation by adjusting
the number of bits used to quantize messages on each sensor-actuator communica-
tion link. This optimal power scheduling yields several orders of magnitude in power
savings over uniform allocation strategies that use a fixed number of bits on each
communication link.

Finally, we explore the flexibility of redundant representations for sparse approx-
imation. Neuroscience and signal processing both need a sparse approximation al-
gorithm (i.e., representing a signal with few non-zero coefficients) that is physically
implementable in a parallel system and produces smooth coefficient time-series for
time-varying signals (e.g., video). We present a class of locally competitive algorithms
(LCAs) that minimize a weighted combination of mean-squared error and a coef-
ficient cost function. LCAs produce coefficients with sparsity levels comparable to
centralized algorithms while being more realistic for physical implementation. The
resultant LCA coefficients for video sequences are more regular (i.e., smoother and
more predictable) than the coefficients produced by existing algorithms.
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Chapter 1
Introduction

1.1 Sensing Systems

Sensing systems are the window that allows both man-made and biological systems
to view the outside world. The ability of a machine or a biological organism to
understand the local environment relies on the methods used to process this sensory
information. In particular, a key aspect of processing this sensed data is choosing an
appropriate way to represent the information of interest to the system. Much of the
success of modern signal processing in tasks such as compression and denoising can
be traced to finding a representation (e.g., Fourier, wavelets, etc.) that matches well
to “interesting” signals (data) but not to “uninteresting” signals (noise).

Despite making significant progress in a number of important problems, general
signal processing solutions to “scene analysis” tasks such as speech recognition and
computer vision are still disappointing. Though their information processing strate-
gies are not well understood, neural systems are very adept at understanding their
environment even in very hostile conditions. For example, man-made solutions for
recognizing speech have steadily improved over recent decades but they still cannot
approach the perceptual abilities of human beings in general settings [116]. Under-
standing more about the information processing strategies used by neural systems
would almost certainly improve machine performance in such tasks, even under dif-
ferent implementation constraints.

Beyond simply mimicking the tasks of biological systems, many modern signal
processing problems share a common structure with the problems solved by neural
systems. For instance, signal processing tasks often require extracting very structured
information from high-dimensional, multi-modal data. Understanding how the infor-
mation processing strategies used by neural system enable their perceptual abilities in
one task can inspire solutions to many other problems that share a similar structure.

Unfortunately, we do not have a clear understanding of the information representa-
tions used by most sensory neural systems. Current technological limitations prevent
us from acquiring the vast amounts of data required to decipher the tactics used by
large and complex neural systems to process sensory information. Consequently, a
mature understanding of these neural systems will likely only come through a com-
bination of experimental data and theoretical models providing testable hypotheses.

Neural systems represent sensory information using neural populations that have
two characteristics that are not well understood: redundancy and distributed process-
ing. This thesis will focus on understanding the role of these particular characteristics
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for two reasons. First, these characteristics appear to be ubiquitous in biological sen-
sory neural systems. Second, the roles of both redundancy and distributed processing
are increasingly important in modern signal processing problems.

1.2 Redundancy

Despite not knowing the inner workings of sensory neural systems, redundancy
clearly plays a crucial role in representing information. Anatomical observations
indicate that shortly after the transduction front-end, sensory systems process data
in successive stages each composed of a neural population [87]. Examples from both
the early visual pathway [112] and the early auditory pathway [121] indicate that these
populations are redundant, using many more neurons than the previous stage. This
observation raises the question “Why do neural systems use so much redundancy?”
More specifically, what perceptual tasks does redundancy enable that would not be
possible with a critically sampled representation?

Conventional signal processing wisdom associates redundancy with robustness.
This viewpoint states that redundancy is useful to recover from corruption but should
be removed in all other cases for maximum efficiency. This conflict appears in the
classic information theory result known as the “separation theorem” [140], which
divides the fundamental communication pathway into two stages. The first stage
(source coding) removes as much redundancy as possible from a signal representation.
The second stage (error control coding) introduces redundancy back into the signal
representation to counter the inevitable communication errors.

While the communications paradigm describes efficient information transmission,
it does not address the task of trying to efficiently understand the content of a sensed
signal (i.e., trying to infer the environmental conditions responsible for the signal).
When considering this broader task, a second advantage of redundancy comes to light:
redundancy allows flexibility in the representation. Critically sampled representations
(e.g., an orthonormal basis) contain enough information to reconstruct a signal but
they must use a single fixed strategy for the encoding. In a redundant representation,
the redundancy allows us to choose from among many possible encodings to find one
that not only communicates the sensed signal but also makes the content of that signal
easier to infer. Understanding the role that this flexibility can play is a critical step
to understanding the nature of redundant representations in sensory neural systems.

1.3 Distributed Processing

Many modern signal processing problems rely on distributed processing, either
because the data was originally gathered in that form (e.g., from a physically dispersed
collection of sensors) or because the available processing resources are inadequate for
centralized computation on a full dataset. Again, conventional wisdom says to remove
the distributed processing constraints as quickly as possible in favor of centralized
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computations. The most favorable situation distills the data down to a single sufficient
statistic that can be evaluated in one central location.

This desire for data centralization is understandable. Managing the redundancy
in a representation requires coordination that is most easily achieved with centralized
oversight. In contrast, neural systems appear to take an opposite strategy. Rather
than centralize information down to a single decision-making cell (known as a “grand-
mother cell”), neural systems appear to use the joint activity in successively larger
neural populations to analyze a sensory stimulus. The example of neural computation
indicates that there exist efficient strategies for managing redundant representations
even without centralized control.

1.4 Contributions

This thesis takes the viewpoint that both our comprehension of neural systems and
the quality of our signal processing solutions can be improved by better understanding
the consequences of redundancy and distributed processing in the representation of
sensed data. The approach we take is to abstract the sensing process using a simple
linear vector space model to explore the fundamental role of these two characteristics.
Specifically, this thesis explores three different aspects of redundant representations:

• the robustness of redundant representations;

• the coordination of redundant representations when turning sensing into actu-
ation; and

• the flexibility of redundant representations for sparse approximation.

In each case, the system operates under distributed processing requirements.
Chapter 3 addresses the robustness of redundant representations in the context

of noise reduction. This chapter generalizes known noise-reduction results from ad-
ditive noise to Poisson process modulation. This generalization is important because
nonlinear point process noise sources are a more appropriate model for neural commu-
nication than additive noise. The nonlinear nature of point process noise sources can
cause significant difference from the additive noise case. Additionally, this chapter
characterizes the amount of noise-reduction ability that is lost in a redundant repre-
sentation when a distributed processing constraint is enforced. This assessment is a
critical step to understanding how robustness is affected by the distributed process-
ing constraints seen in both neural systems and many interesting signal processing
problems.

Chapter 4 addresses the task of managing redundancy when turning sensed data
into action. Wireless sensor and actuator networks (WSANs) use a distributed collec-
tion of resource constrained sensor nodes to collect data about the environment and a
distributed collection of actuator nodes to affect the environment. We desire WSAN
strategies similar to the behavior seen in neural systems: turning sensed data into
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action without centralized control in a very redundant system. Using a crayfish reflex
behavior as a guide, this chapter develops an analytic model for a class of WSANs
that demonstrates many control laws can be implemented in a completely distributed
manner.

In this WSAN model, a weight is associated with each sensor-actuator link denot-
ing the importance of that communication link to the actuation fidelity. We show that
these weights are useful in pruning away communication links to reduce the number of
active channels. Inspired by recent work in power scheduling for decentralized estima-
tion, this chapter also optimizes the allocation of system resources to achieve a desired
actuation fidelity. In this scheme, each sensor acquires a noisy observation and sends
a message to a subset of actuators. The message sent on each sensor-actuator com-
munication link is quantized with a variable number of bits, with the number of bits
optimized to minimize the total network power consumption subject to a constraint
on the actuation distortion. We show analytically and verify through simulation that
performing this optimal power scheduling can yield several orders of magnitude in
power savings over communication strategies that use a uniform resource allocation
on each communication link.

Chapter 5 addresses the flexibility of redundant representations in the context
of sparse approximation. Several researchers hypothesize that neural systems may
employ sparse coding, using the flexibility of a redundant representation to encode a
stimulus through the activity of just a few neurons in a large population [114]. How-
ever, the mechanisms used by neural systems to produce these sparse codes are still
unknown. Research over the last decade has also shown that this sparse approxima-
tion problem (i.e., finding a signal representation using as few non-zero coefficients
as possible) is relevant to many signal processing tasks.

Sparse approximation methods currently employed in signal processing tasks suffer
two significant drawbacks: they are difficult to implement in a physical system (hard-
ware or neural), and they are inefficient for time-varying stimuli (e.g., video) because
they produce erratic temporal coefficient sequences. We present a class of neurally
plausible locally competitive algorithms (LCAs) that correspond to a collection of
sparse coding principles minimizing a weighted combination of mean-squared error
(MSE) and a coefficient cost function. LCAs use thresholding functions to induce
local (usually one-way) inhibitory competitions. LCAs demonstrate sparsity levels
comparable to existing sparse coding algorithms while being more realistic for neural
and hardware implementation. Additionally, LCA coefficients for video sequences
demonstrate inertial properties that are both qualitatively and quantitatively more
regular (i.e., smoother and more predictable) than the coefficients produced by greedy
algorithms. LCAs represent a first step toward producing testable predictions for the
sparse coding hypothesis in neural systems as well as giving insight to new signal
representation that could improve our processing of time-varying signals.
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Chapter 2
General Background and Notation

2.1 Mathematical Preliminaries

2.1.1 General notation

We will be concerned with signals x considered to be elements from a finite di-
mensional vector space x ∈ H. We simply consider signals as N -dimensional vectors
x ∈ R

N , where the meaning of the dimension (e.g., temporal samples, spatial samples,
etc.) is inferred from the context. We will often use the terms signal, vector and stim-
ulus interchangeably to refer to x. The scalar components of the vector are notated
with the appropriate non-boldface symbol and a subscript, x = [x1, x2, . . . , xN ]t,
where t indicates the transpose operator. Matrices will generally be notated with
boldface capital letters such as X. In particular, the identity matrix is denoted I,
with the exact dimensions given by the context. Scalars are always notated with non-
boldface symbols and are either uppercase or lowercase depending on the accepted
convention of the context.

We assume that a vector space H is endowed with the usual inner product
〈x,y〉 =

∑N
n=1 xnyn (where y ∈ H) and induced norm ‖x‖ = 〈x,x〉1/2. We will

also employ more general `p norms,1 where ‖x‖p =
(∑N

n=1 |xn|p
)1/p

for p ∈ (0,∞).

The norm ‖·‖ (without a subscript) on H is therefore equivalent to the `2 norm ‖·‖2 .
The distance between two signals is often quantified through the mean-squared error
(MSE), given through the normalized `2 norm of the difference signal 1

N
‖x− y‖2

2.
We also adopt the standard convention of defining the `0 norm to be

‖x‖0 =
∑N

n=1 1(xn 6=0), where 1(·) is the indicator function. While the notation ‖·‖0

is simply a convenient way to denote a measure counting the non-zero elements of a
vector, the origins of this notation can be seen by taking the limit of ‖·‖p

p as p → 0.

2.1.2 Abstract sensing systems

Sensing systems consist of a collection of elements that each measure information
about their local environment. This is most easily imagined with spatially distributed
sensors (e.g., temperature sensors in a forest, or photoreceptors in the retina) that each

1The `p “norms” only satisfy the mathematical requirements for a norm when p ≥ 1. However,
we adopt the standard (though slightly misleading) terminology of referring unashamedly to these
measures as norms regardless of the value of p.
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measure an environmental field over their local spatial region. However, this same
notion is also true in other domains. For example, the inner hair cells of the cochlea
have a “local environment” defined as a specific frequency region. In a complementary
example, each time sample of an analog-to-digital converter has a “local environment”
defined as a specific time-window. Our focus will be on the collective representation
of the information after acquisition. To this end, we need an abstract model of the
sensing process that encompasses all of these scenarios.

Due to the dynamics of the local environment being sensed, sensor measurement
models often consist of averaging the stimulus field over their local environment. We
therefore represent each sensor by a “receptive field”2 φk, where k is an index variable
denoting the specific sensor element (e.g., spatial location, temporal sample number,
center frequency, etc.). This receptive field incorporates both the physics of the device
(e.g., preferential sensing directions) and the physics of the environment surrounding
the sensor. For example, the receptive field of a sensor may incorporate the spatial
averaging induced by the propagation properties of the surrounding medium, cor-
responding to the Green’s function [26] for the process being sensed. As a specific
example, a soil moisture sensor is represented by a spatial average of the true moisture
defined by the diffusion behavior [101] of the soil.

Single ideal measurements of the signal x taken by the kth sensor are therefore
given by

mk = 〈φk,x〉,
where the inner product is taken over the appropriate domain for H (e.g., time, space,
frequency, etc.). Note that this is a very general notion of sensing, encompassing the
familiar Shannon-Nyquist sampling of a time series [99], the spatial averaging of an
environmental sensor [109], and recent non-traditional notions of signal measurement
using random projections [13,50]. While this sensing model allows both positive and
negative measurements, some systems are limited to only having positive coefficients
(e.g., neural systems using point process communication can only employ positive
intensity functions). This situation is easily addressed in practice by splitting our
abstract sensing nodes into two physical nodes. These physical nodes have receptive
fields that are opposite in sign and their measurements are rectified.

If the system must capture any signal x ∈ H, the sensor vectors must span the
input signal space, H ⊆ span ({φk}). The space H represents a restricted class of
fields that is consistent with the resolution of the sensors. For example, H may be
a space of spatially or temporally bandlimited functions. The actual stimulus field
in the environment may not be in H, but the sensors have a limited resolution that
precludes them from sensing an unrestricted class of signals. Therefore, H assumes
the role of a signal model, quantifying the component of the true environmental
signals most important to the specific application.

2The terminology “receptive field” is taken from the neuroscience community where neurons are
often characterized by the stimulus causing the strongest response.
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This linear model of sensor measurements obviously cannot capture the nonlinear-
ities often seen in real sensing systems. However, this linear model suits the purposes
of this study for two reasons. First, many observed nonlinearities in the transduc-
tion process are pointwise memoryless functions. In other words, the nonlinearity
modifies the dynamic range of the sensor but does not change the fundamental infor-
mation being captured. These nonlinearities can often be thought of as an invertible
transformation through large portions of the dynamic range where the system usu-
ally operates. In contrast, one type of interactive (non-invertible) nonlinearity will
be discussed in detail in Chapter 5. Second, understanding the fundamental conse-
quences of redundancy and distributed processing requires an analytically tractable
model of the sensing process. Including sensing nonlinearities would only complicate
the analysis and may not shed additional insight at this point.

2.1.3 Frame theory

Section 2.1.2 describes an abstraction of the sensing process involving a collection
of linear projections onto vectors spanning a vector space. This notion is very familiar:
projecting a signal onto an orthonormal basis (ONB) is a fundamental tool in signal
processing (e.g., wavelet and Fourier transforms). However, general sensing systems
deviate from an ONB because they are redundant.

In words, this notion of redundancy means that there are more measurements
acquired than are necessary to capture the signal class of interest. Mathematically,
this situation corresponds to having more vectors {φk}K

k=1 than the dimension of the
signal space N = dim (H), K > N . While we are normally interested in substantially
redundant systems where K � N , any amount of overcompleteness means that the
vectors no longer constitute a basis. The generalization of a basis to an overcomplete
set of representation elements is known as a frame [15, 20, 55, 76, 93].

Frames were originally introduced to the signal processing community in 1952 in
the context of nonharmonic Fourier series [55]. However, overcomplete representations
would not gain significant popularity until much later when they played a key role
in wavelet theory [33, 34, 36]. The appeal of frames is rooted in the flexibility they
provide. In one viewpoint (driven by research in wavelet analysis), the redundancy
introduces extra degrees of freedom that provide an avenue to get properties such as
compactly supported filters or increased shift-invariance in a wavelet representation.
In another viewpoint, the redundancy allows one to build a representation that is well-
matched to signals that do not match well to a single ONB (e.g., a signal consisting of
a combination of sine waves and impulses). Frames have recently been used in many
other areas to model redundant systems, including filterbanks [10], quantization [6,11,
35,74], image processing [12,23,53,65,94], communications [144,149,152], coding [14,
73, 75, 138] and machine learning [68].

Specifically, a collection of K vectors {φk} forms a frame for H if there exist
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Figure 2.1: Example basis and frame representations in R
2. (a) An orthonormal basis

(ONB). (b) A non-orthogonal basis. (c) A tight frame with three vectors (A = B = 3
2 ). (d)

A general frame with three vectors (A < 3
2 < B).

constants 0 < A ≤ B < ∞ so that Parseval’s relation is bounded for any x ∈ H,

A ‖x‖2 ≤
K∑

k=1

|〈φk,x〉|2 ≤ B ‖x‖2 .

The constants A and B are called the upper and lower frame bounds. Without
losing generality for our applications, we assume the frame vectors are all unit-norm,
‖φk‖ = 1, ∀k (sometimes called a uniform frame). Under this condition, the frame
bounds satisfy A ≤ K

N
≤ B, and are viewed as measuring the minimum and maximum

redundancy of the system. Figure 2.1 illustrates some simple example bases and
frames in R

2. While frame theory also includes generalizations to infinite dimensions,
we will only discuss frames having a finite number of elements (K < ∞).

The frame condition given above guarantees that the collection of measurements
{mk} (also called analysis coefficients) obtained from projecting a signal onto the
frame vectors contains all of the information necessary to synthesize (or reconstruct)
the signal. Mathematically, the analysis coefficients are generated through the frame
analysis operator Φ : H → R

K , given by Φx = [m1, m2, . . . , mK]t. In the finite di-
mensional cases we consider, Φ is simply a (K ×N) matrix containing the vector φk

on the kth row.
In finite dimensions, the adjoint of the frame analysis operator is simply the matrix

transpose, Φt : R
K → H, known as the frame synthesis operator. The composition is

given by

ΦtΦx =

K∑

k=1

〈x,φk〉φk.

Though the analysis and synthesis operators are inverse operations in an ONB, the
dependency between frame vectors means that they are not inverse operations in a
frame, ΦtΦ 6= I. In other words, the same set of vectors cannot be used for both
analysis and synthesis.

In general, Φ represents an underdetermined system and therefore does not have
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a unique inverse operator. The pseudoinverse operator Φ† = (ΦtΦ)
−1

Φt is most
commonly used for reconstruction,

x = Φ†Φx =
(
ΦtΦ

)−1
K∑

k=1

〈x,φk〉φk.

Equivalently, we can view the reconstruction as using a different set of vectors {φ̃k}
called the dual set, x =

∑K
k=1〈x,φk〉φ̃k. While there are an infinite number of sets of

dual vectors that will work for reconstruction, the canonical dual vectors are given by
φ̃k = (ΦtΦ)

−1
φk, corresponding to choosing the pseudoinverse to invert the analysis

operator Φ. The canonical dual vectors are also a frame for H, with lower and upper
frame bounds

(
1
B

, 1
A

)
, respectively. Also note that the frame vectors and the dual set

are interchangeable in the reconstruction equation,

x =
K∑

k=1

〈x,φk〉φ̃k =
K∑

k=1

〈x, φ̃k〉φk.

The frame bounds are related directly to the eigenstructure induced by the frame
vectors: A and B are the minimum and maximum eigenvalues (respectively) of (ΦtΦ).
When a collection of vectors has frame bounds that are equal, A = B = K

N
, it is called

a tight frame. When a frame is tight, the dual vectors are simply re-scaled versions
of the frame vectors, φ̃k = 1

A
φk. A collection of vectors is an ONB if and only if it is

a tight frame with A = B = 1.
This frame theory viewpoint describes signal representation as an analysis oper-

ation (sensing) paired with a synthesis operation (reconstruction). However, we can
take a more general approach to representing a signal. Consider the frame vectors
as constituting a dictionary, D = {φk}. We can then represent a signal vector x by
drawing selected elements (sometimes called atoms) from this dictionary and forming
a linear combination with a set of coefficients {ak}

x =

K∑

k=1

akφk.

Though the coefficients are unique when D is an ONB, there are an infinite number of
ways to choose the coefficients when D is overcomplete. This flexibility can be used in
nonlinear encodings to find coefficients that represent the signal and have other prop-
erties. One example of this is the sparse approximation problem, where coefficients
are chosen to have as few non-zero elements as possible (e.g., see Chapter 5).
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2.1.4 Perturbations in a frame

Despite the pace of modern technological innovation, we do not expect to ever be
able to store and transmit signals with infinite precision. Because we rarely have the
luxury of a perfect signal representation, one of the most obvious benefits of a redun-
dant representation is the ability to reduce corruption in the coefficients representing
a signal. In an ONB, perturbing a measurement coefficient (including removing it
entirely) has a proportional impact on the reconstruction — the energy in the recon-
struction error is the same as the energy in the perturbation. While the redundancy
of a frame can provide a measure of robustness to these perturbations, it also makes
the effect of such perturbations harder to analyze. In order to design and analyze
systems utilizing this benefit, we must quantify the effect of coefficient perturbations
on a signal representation.

Stated generally, we need to calculate a bound on the maximum error when
a perturbation pk is added to each frame coefficient mk in the reconstruction,
x̂ =

∑K
k=1 (mk + pk) φ̃k. Perturbations may include removing the coefficient from

the reconstruction, pk = − (mk). The error resulting from these perturbations is

‖x− x̂‖2 =

∥∥∥∥∥

K∑

k=1

pkφ̃k

∥∥∥∥∥

2

. (2.1)

We recall that the dual set {φ̃k} is also a frame for Hx, and we denote the analysis

operator for the dual frame to be Φ̃. Note that the error signal recast in matrix

notation is (x− x̂) = Φ̃
t
p, where p is the perturbation vector p = [p1, p2, . . . , pK]t.

Linear algebra can yield a bound on the error,

∥∥∥Φ̃
t
p

∥∥∥
2

=
∣∣∣〈p, Φ̃Φ̃

t
p〉
∣∣∣ ≤

∥∥∥Φ̃Φ̃
t
∥∥∥ · ‖p‖2 .

Note that because the singular values of Φ̃ are the square roots of the eigenvalues of

both
(
Φ̃Φ̃

t
)

and
(
Φ̃

t
Φ̃
)
, it follows that

∥∥∥Φ̃Φ̃
t
∥∥∥ =

∥∥∥Φ̃
t
Φ̃
∥∥∥. Because the dual set is

a frame for H with upper frame bound
(

1
A

)
and because of the relationship between

the eigenvalues of
(
Φ̃

t
Φ̃
)

and the frame bounds, we can finally write a useful bound

(alluded to in [5]) on the reconstruction error

‖x− x̂‖2 ≤ ‖p‖2

A
. (2.2)

In words, the perturbation energy is reduced in the reconstruction by at least the
minimum redundancy in the set of frame analysis vectors {φk}. The upper bound
in (2.2) is consistent with probabilistic robustness results when stochastic noise is
added to frame coefficients [73].
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2.1.5 Signal dictionaries

Many different signal dictionaries have significance in signal process-
ing. Perhaps the most fundamental dictionary is the canonical ba-
sis, {ek}. Each element in this ONB has a single non-zero entry,
e1 = [1, 0, . . . , 0]t, e2 = [0, 1, 0, . . . , 0]t, . . . eK = [0, . . . , 0, 1]t. Though not an over-
complete system, the canonical basis arises as a useful analytic tool in a number of
settings.

A number of more specialized dictionaries are also commonly used in signal pro-
cessing applications. The family of Fourier transforms (including continuous and
discrete domains of time and frequency) can be thought of as a set of dictionaries
consisting of complex exponentials. Similarly, the family of wavelet transforms are a
set of dictionaries consisting of localized oscillating functions with various locations
and scales. Each of these dictionaries are well-matched to specific classes of signals
that can be represented with relatively few dictionary elements. For example, Fourier
dictionaries are well-matched to “harmonic” signals consisting of strong periodic com-
ponents. In contrast, wavelet dictionaries are well-matched to signals consisting of
smooth regions connected by abrupt transitions (i.e., piecewise polynomial signals).

A number of other dictionaries are commonly used in signal and image process-
ing applications. Various representation systems have been developed by altering
the space-frequency (or time-frequency) partitions underlying the dictionary atoms,
including wavelet packets [24], complex wavelets [89, 139], windowed Gaussian (i.e.,
Gabor) atoms [123], steerable pyramids [141,142], curvelets [12] and contourlets [46].
Several other dictionaries have been designed by simply “tiling” a single atom over var-
ious parts of the domain (generally 2-D dyadic squares over the spatial domain). Ex-
amples of such tilings include wedgelets [48] (piecewise constant atoms), platelets [154]
(piecewise planar) and surflets [18] (piecewise constant with polynomial discontinu-
ities). Finally, other researchers have taken to building complex dictionaries by simply
combining dictionaries that individually have very different characteristics [18, 151].

2.2 Neuroscience Preliminaries

2.2.1 The neurobiology of single neurons

Sensory neural systems are built using connected networks of single neurons.
While the structure of a neuron varies throughout a single system, typical neurons
have three distinct components: an input region, an integrative region, and an output
path, seen in Figure 2.2. The input region is largely made up of a dendritic tree. The
cell body, or soma contains the biological components common to all cells, housing
the machinery necessary to maintain cellular function. The soma also typically serves
as the neuron’s integrating region, combining inputs initiated in distinct portions of
the dendritic tree. The axon is the major extension projecting away from the soma,
carrying output signals to other neurons. The connection from the axon to another
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Figure 2.2: Basic anatomy of a general neuron (adapted from [87]). Typical neurons have
three distinct regions: an input region consisting of a dendritic tree, an integration region in
the cell body (soma) and the output along the axon. The axon terminates in a presynaptic
terminal that forms a synapse with an adjacent neuron.

neuron’s dendritic tree is called a synapse. The synapse consists of the presynap-
tic terminal (a specialized area on the sending neuron) and a postsynaptic terminal
(a specialized area on the receiving neuron) [87, 106]. A typical neuron has many
dendrites but only one axon.

Neurons represent signals by an electrochemical potential across the cell mem-
brane. The intracellular and extracellular solutions are electrically neutral, so the
electrical potential is determined by the presence (or absence) of charged ions. The
four most significant ions in neurophysiology are sodium (Na+), potassium (K+), cal-
cium (Ca+) and chloride (Cl+). The cell membrane is a two-layer lipid structure that
is virtually impermeable to these ions [106]. When there is a potential difference
between the intracellular and extracellular ionic concentrations, the cell membrane
separates and stores ionic charge the same way capacitors function with free electrons.

The cell membrane is embedded with ion channels that are often selective for
a certain ion species. These channels can vary their transmission rate depending on
several stimulating factors, including the magnitude of the membrane potential or the
presence of a specific chemical agent [87,106]. In electrical terms, the ion channels are
modeled as resistors with a specific conductance (the reciprocal of resistance) being
driven by an electrochemical gradient.

In a typical model of a neuron, presynaptic activity induces a membrane potential
change in a dendrite (called an excitatory postsynaptic potential, or EPSP). The
resulting current travels down the electrical gradient from the dendrite to the soma
and is integrated with inputs from other dendrites [87, 106].
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In most neurons, the analog potentials in the soma act as an input for the stochas-
tic production of action potentials, or spikes in the membrane potential. These spike
waveforms actively propagate down the axon to act as an output signal for the neuron.
Spike waveforms are generally stereotyped, leaving only event timing as the significant
feature. Spike trains are frequently modeled mathematically as point processes [84],
stochastic processes completely defined by event timing [28, 143]. When action po-
tentials reach the presynaptic terminal, a chemical neurotransmitter is released into
the extracellular space to generate an EPSP on a postsynaptic neuron.

2.2.2 The early visual pathway

While our goal is to understand general information representation principles used
by sensory neural systems, we will phrase most of our discussion in terms of the
human visual system. Though the operation of the systems is very different, many
of the same general principles can be seen (using appropriate abstractions) in the
auditory system. Our overview of the early visual pathway will be exceedingly brief
and providing only a very high level description of the system. A general introductory
text such as [81] provides a more detailed exposition.

Anatomically, sensory systems appear to be organized using stages (or layers) of
neural populations. The collective activity of the entire population of neurons in
a single stage represents the sensory information about the external stimulus. In
moving from one stage to the next, a single neuron generally projects its output to
the dendritic tree of many neurons in the succeeding stage. While there are typically
many different types of cells at each stage (e.g., rod and cone type photoreceptors in
the retina), we will ignore these distinctions to illustrate the broad function of the
stages.

The first stage of the human visual pathway is a collection of photoreceptors
that transduce the retinal image into electrochemical signals. Each photoreceptor
essentially integrates the light activity over a spatial region. We can view the activity
in the photoreceptor population as a (non-uniformly) sampled representation of the
retinal image. The photoreceptor outputs excite a layer of bi-polar cells, which in
turn project to a layer of retinal ganglion cells. The axons of the retinal ganglion
cells form the optic nerve, principally projecting to a region of the thalamus called the
lateral geniculate nucleus (LGN). The output of the LGN cells serve as the principal
input to the primary visual cortex (V1). The outputs of V1 appear to project to
several different areas of the visual cortex, forming parallel streams that have distinct
functions in higher-level processing (e.g., the ventral stream and the dorsal stream).

One way to understand the function of cells in a particular layer is to record the
cell activity while presenting the system with simple stimuli (e.g., small points of
light). By making systematic stimulus variations and recording the cell activity, one
can map out the form of the stimulus that causes the cell to respond. This type
of experiment leads to the notion of a receptive field, a description of the canonical
stimulus that makes the cell respond most strongly. In the LGN, these receptive fields
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Figure 2.3: Anatomic and functional diagrams illustrating the early visual pathway in
humans. Both figures are adapted from [81]. (a) The major components of the early visual
pathway as arranged anatomically in the human. (b) The functional connections of the
early visual pathway. Populations of neurons are grouped together in stages. Each neuron
in one stage typically projects to many nerves in the succeeding stage.

have a center-surround structure, responding most strongly to a bright spot of light
surrounded by a darker contrasting ring (or conversely, a dark center followed by a
bright contrasting ring). In V1, one type of cell (called a simple cell) has a receptive
field resembling a Gabor atom [86]. These receptive fields match well with edges in
the image, having a preferential spatial location, spatial bandwidth and orientation.
Though we will not discuss them in any detail, the other primary type of cell in V1
are called complex cells. These cells also responds to oriented edges, but may respond
regardless of the exact location of the edge within the receptive field or may only
respond to moving stimuli.

The notion of a receptive field essentially implies a linear-filtering operation in
space and time to represent the stimulus.3 In the terminology of the abstract sensing
system described in Section 2.1.2, a commonly accepted model of the early visual
pathway views each layer as applying a set of linear filters to the outputs of the
previous stage. Much like the overcomplete dictionaries described by frame theory,
each stage past the retina appears to be significantly more overcomplete than the
previous stage. For example, one estimate of the ratio of V1 outputs to V1 inputs (in
cat) yields a 25:1 ratio [112].

3Common models of these cells also include a nonlinearity. However, the “standard model”
that has emerged to describe V1 function typically views this nonlinearity as a normalization by
the responses of neighboring units and a pointwise rectification and compression of the dynamic
range [115]. This type of nonlinearity would not affect the information content of the signals being
transmitted and so will not be considered here.
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Chapter 3
Relying on Redundancy for Robust

Representations: Noise Reduction in Frames and

Fusion Frames

In many signal processing applications, robustness is achieved through introducing
redundancy into the signal representation. For example, it is well-known that when
frame coefficients are corrupted with additive noise, reconstruction using the canon-
ical dual vectors reduces the MSE in proportion to the minimum frame bound [99].
However, it is not always the case that redundancy is a good use of system resources,
even when there are signal imperfections. In order to optimize resource allocation,
it is important to understand the various robustness gains achieved by increasing
redundancy in centralized and distributed systems.

3.1 Corruption in Distributed Sensing Systems

Assessing the robustness properties of redundant representations can be compli-
cated for several reasons. First, additive noise is not always a good model for processes
that induce coefficient corruption. In particular, sensory neural systems communicate
through action potentials that are often modeled as point process representations [84].
Extrapolating results from additive noise sources to point processes can lead to in-
correct results [132]. In order to understand the potential noise reduction ability
available to a neural system employing redundant population codes, we must quan-
tify and extend the known results from additive noise sources to include point process
modulation.

Second, the known noise reduction abilities of a redundant representation assume
a centralized reconstruction scheme where all of the coefficients are collected at a
single location. There are important and interesting examples of systems that have
redundant total representations but are limited to distributed processing environ-
ments where information must be processed locally before it is globally aggregated.
One example of such a system is a sensor network, where sensor proximity can pro-
duce redundant observations but constraints prohibit centralized processing. Another
example is sensory neural systems, where sensory information is represented by col-
lections of neural populations represented different features of the stimulus [133]. It
is important to understand how this distributed processing requirement affects the
noise-reduction ability of the system.
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Using frame theory to model an abstract sensing system, we extend the known
noise reduction properties of redundant representations to Poisson process noise model
commonly used for neural systems. We also determine the potential impact one
type of distributed processing has on the noise reduction properties of a redundant
representation. We employ an extension of frame theory called “fusion frames” [16,17]
that links the properties of a global frame (centralized structures) and local collections
of frame elements (distributed structures). Using this tool, we find conditions under
which there is no loss in noise reduction ability, and we bound the performance loss
for more general cases.

3.2 Background and Related Work

3.2.1 Poisson counting processes

We consider the encoding of a signal vector x ∈ R
N in a frame through the collec-

tion of measurements mk = 〈x,φk〉, k = 1, . . . , K. We assume that these projections
have bounded magnitudes, |mk| ≤ ∆, ∀k. These analog coefficients would require in-
finite precision to store and transmit in their current state. The most common model
for the inevitable corruption caused by finite precision storage or transmission is ad-
ditive noise. However, in some systems (including neural systems) the uncertainty
comes from modulating the signal onto a point process.

The simplest starting place for modeling point process communication is to use a
Poisson counting process. To ensure that we have non-negative rates for the Poisson
encoding, we first define a simple invertible transformation to make the coefficients
non-negative, h(mk) = mk + ∆. To simplify notation, we denote the coefficients
that will be transmitted (sent) as ms

k = h(mk) over a common time interval.1 These
coefficients will be transmitted over a noisy medium to generate received coefficients
{mr

k}. In a Poisson counting process, the received coefficients are independent and
identically distributed according to the Poisson distribution,

P (mr
k|ms

k) =
e−ms

k (ms
k)

mr
k

mr
k!

.

The received coefficients are non-negative integers, with an expected value and vari-
ance equal to the sent coefficient

E [mr
k] =

(
E
[
(mr

k)
2]− E [mr

k]
2) = ms

k.

3.2.2 Fusion frames

Though a frame certainly provides some robustness to reconstruction error (see
Section 3.2.3), the underlying assumption when reconstructing from frame coefficients

1The length of the time interval is not critical for our purposes, so we implicity assumed it is 1.

16



is that those coefficients can be centrally collected in one place. In many settings with
distributed processing constraints, centrally collecting the frame coefficients is either
impossible or very undesirable. Instead, it is likely that subcollections of coefficients
will have to be aggregated locally before centralization. In other words, signal re-
construction will be first performed in a subspace of the signal space before those
subspace reconstructions are aggregated for the final (full) reconstruction. To begin
analyzing a reconstruction from redundant elements in this distributed way, we turn
to a new theory of “fusion frames” [16,17].2 Here, signals are decomposed in terms of
overlapping subspaces that are each locally spanned by a collection of frame elements.

Specifically, a family of closed subspaces {Wi}L
i=1 is a fusion frame for the vector

space H if for every signal x ∈ H,

As ‖x‖2 ≤
∑

i
‖πi(x)‖2 ≤ Bs ‖x‖2 , (3.1)

where 0 < As ≤ Bs < ∞ are the fusion frame bounds and πi(·) is the orthogonal
projection onto Wi. From (3.1) it is clear that the fusion frame bounds are them-
selves bounded by the number of subspaces, L ≥ Bs. A fusion frame is in many
ways analogous to a frame. In frame theory, an input signal is represented by a
collection of scalar coefficients that measure the projection of that signal onto each
frame vector. In a fusion frame, an input signal is represented by a collection of
vector “coefficients” that represent the projection (not just the projection energy)
onto the each subspace. Formally, for a fusion frame, the representation space is
defined as V = {{xi}|xi ∈ Wi}, the space of all collections of vectors containing one
representative from each subspace.3

Analogous to frame theory, a fusion frame has an analysis operator,
W : H → V , Wx = {πi(x)} = {xi}. The adjoint of the analysis operator is
the synthesis operator, W∗ : V → H , W∗{xi} =

∑
i xi. The composition of

the analysis and synthesis operators simply project the signal onto the over-
lapping subspaces and then take the linear combination of these projections,
(W∗W) : H → H , (W∗W)x =

∑
i πi(x). This composite operator is bounded

and invertible, with bounds As ≤ ‖(W∗W)x‖ ≤ Bs and 1
Bs ≤

∥∥(W∗W)−1
x
∥∥ ≤ 1

As

for all ‖x‖ = 1. As in section 2.1.3, the unique pseudoinverse for W is given by
W† = (W∗W)−1 W∗.

Fusion frames are a powerful tool because one of the fundamental results of [16]
shows that there is a link between the properties of a global frame and local collections
of those frame elements. If each subspace Wi has an associated family of vectors that
locally form a frame for Wi with bounds (Ai, Bi), then the total collection of vectors
globally form a frame for H. It can be shown that the frame bounds (A, B) for this

2Fusion frames also alternately go by the name “frames of subspaces”.
3The fusion frames theory also extends to infinite dimensional spaces by incorporating the usual

finite-energy restriction on the vectors {xi}. This explicit restriction is not necessary in our finite-
dimensional setting where all vectors have finite energy.
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global frame are bounded by AsAmin ≤ A and B ≤ BsBmax, with equality when the
same frame bounds apply to each local frame, Ai = Amin and Bi = Bmax, ∀i.

Because of the link between frames for a local subspace and the global frame of
elements taken together, we can use fusion frames to represent distributed process-
ing [130, 131]. In this model, the frame vectors local to one subspace are used to
reconstruct the orthogonal projection of the signal into that subspace while maximiz-
ing the noise reduction properties of the local frame. The collection of reconstructed
signals within each subspace are then used to reconstruct the original input signal
while maximizing the noise reduction properties of the fusion frame. This subspace-
based reconstruction distributes the processing by only requiring knowledge of the
frame vectors within a subspace to do a local reconstruction. Such a scheme adds
a level of robustness to the system because only vectors in one local subspace are
affected if a frame vector is added or removed.

3.2.3 Additive noise reduction in a frame

In a frame decomposition (tight or non-tight), it is well known that the pseudoin-
verse operator Φ† is optimal among all linear operators at reducing the reconstruction
MSE when the coefficients are corrupted with additive noise [99]. The amount of noise
power eliminated is related to the amount of redundancy in the elements, which is
reflected in the frame bounds [74]. Section 2.1.4 quantified the effect of a general per-
turbation in a frame. Here we consider the specific case of additive stochastic noise.
While these results could follow immediately from the results of Section 2.1.4, the lit-
erature on this topic normally takes a slightly different approach than the techniques
used in Section 2.1.4.

Let {φk}K
k=1 be a frame with bounds (A, B) for an N -dimensional input space H.

Reconstruction coefficients are corrupted by uncorrelated noise nk with variance σ2,

x̂ =

K∑

k=1

[〈x,φk〉 + nk] φ̃k.

The total MSE of the reconstructed vector x̂ is given by

E
[
‖x̂− x‖2] = σ2

K∑

k=1

∥∥∥φ̃k

∥∥∥
2

= σ2

N∑

n=1

1

ηn
, (3.2)

where {ηn}N
n=1 are the eigenvalues of the composite operator

(
ΦtΦ

)
[20, 34, 74, 99].

The MSE per signal dimension is bounded by

σ2

B
≤ E

[
‖x̂− x‖2]

N
≤ σ2

A
. (3.3)

Note that in reconstructing with the redundant expansion, the noise is reduced by
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Figure 3.1: Reconstruction MSE increases with the number of vectors in a resource con-
strained system. The input space is taken to be R

10 and we vary the number of vectors (K)
in the tight frame from 10 to 20. When there are 100 total bits that used to transmit the
coefficients, the total MSE (accounting for the quantization noise and the frame reconstruc-

tion) is K
N 2−

100
K . The increased quantization noise overwhelms the increased noise-reduction

ability of the frame as the number of vectors is increased. In this resource constrained sys-
tem, an ONB (K = 10) is optimal.

an amount at least proportional to the minimum redundancy. It is clear from the
derivation of equation (3.3) that the bounds are not tight. The MSE will only achieve
the bounds in (3.3) in the case of a tight frame when the bounds are equal.

The noise reduction result in (3.3) appears to indicate that increasing the redun-
dancy in the frame (i.e., increasing A) will improve system performance by lowering
the reconstruction MSE. However, this result can be deceptive because it does not
include the resource cost of increasing the redundancy. For example, consider a tight
frame with K vectors (A = K

N
) that is limited in the total number of bits β it can use

to communicate all of the coefficients. Assume that each of the K coefficients is com-
municated with β

K
bits. Assuming the common additive noise approximation for the

effects of uniform scalar quantization, the variance of the received coefficients is 2− 2β

K .
Increasing the number of vectors (K) in the system would increase the redundancy
(and therefore have stronger noise reduction abilities), but would also increase the
noise power on each coefficient by decreasing the bit rate assigned to each frame vec-
tor. This effect is illustrated in a simple example shown in Figure 3.1. In this case,
the increased quantization noise from adding more vectors (and thereby spreading
the available bits across more coefficients) overwhelms the increased noise reduction
from increasing the frame bounds. Consequently, the optimal representation in this
resource constrained setting would be an ONB.

19



3.3 Point Process Noise Reduction in a Frame

To understand the potential robustness benefits available to neural systems us-
ing redundant representations, we must consider the impact of point process noise
sources on frame reconstruction. While we may expect similar results to the standard
additive-noise analysis presented in Section 2.1.4, point process encodings can exhibit
non-intuitive behavior. Therefore, we must extend the know results to include this
class of corruption that more closely models neural encodings.

As in Section 3.2.1, we assume a signal vector x ∈ R
N is encoded through bounded

projections onto the frame vectors, mk = 〈x,φk〉, |mk| ≤ ∆, ∀k. To ensure positive
firing rates, the coefficients are shifted via the function ms

k = h(mk) = mk +∆. These
coefficients represent the intensity function of a Poisson counting process, with the
received coefficients denoted mr

k.
The received coefficients are then used to estimate the original coefficients by

inverting the shifting function, m̂k = h−1(mr
k) = mr

k −∆. The estimated signal using
the received coefficients is given by

x̂ =

K∑

k=1

m̂kφ̃k.

Interpreting the coefficient perturbation as (m̂k − mk), the results of Section 2.1.4
quantify the reconstruction MSE for this system,

E
[
‖x− x̂‖2] ≤

E
[∑K

k=1 (m̂k − mk)
2
]

A
.

Because each coefficient is assumed to be encoded independently, the problem reduces
to calculating the second moment of the reconstructed coefficients E

[
(m̂k − mk)

2].
Remembering from Section 3.2.1 that the variance of a Poisson random variable is
equal to the mean, we calculate the expected value of one coefficient perturbation to
be

E
[
(m̂k − mk)

2] = m2
k − 2m2

k + E
[
m̂2

k

]

= E
[
(mr

k − ∆)2]− m2
k

= E
[
(mr

k)
2]− 2 (mk + ∆) ∆ + ∆2 − m2

k

= (mk + ∆) + (mk + ∆)2 − 2 (mk + ∆)∆ + ∆2 − m2
k

= (mk + ∆) .

Therefore, the reconstruction MSE under Poisson counting process modulation is
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E
[
‖x− x̂‖2] ≤

∑K
k=1 (mk + ∆)

A
. (3.4)

As expected, the result in (3.4) is reminiscent of the noise reduction formula for
additive noise given in Section 2.1.4. The primary difference is that the total noise
variance is now signal dependent, scaling with the size of the projections onto the
frame vectors. This property follows because in a Poisson distribution the noise
variance scales with the mean. This result may indicate that higher firing rates may
hamper the reconstruction fidelity for a system communicating via point processes.

The result in (3.4) also clearly depends on the specific form of the shifting function
h(·) to achieve positive firing rates. This function was chosen for its simplicity, and
it is not clear at this point how other choices of h(·) would affect the results.

3.4 Noise Reduction in a Fusion Frame

In a distributed processing setting, local groups of frame vectors (i.e., groups of
vectors not spanning the whole signal space) will be used to partially reconstruct
the signal before these local representations are combined at a centralized location.
Each local collection of vectors forms a frame for a subspace of the signal space. The
local signal reconstruction using just those vectors is equivalent to the projection of
the signal into this subspace. These subspace projections are then combined at a
global location to estimate the original signal. There are two redundancies that must
be accounted for in this setting: the redundancy of the frame vectors spanning each
individual subspace, and the redundancy between the subspaces.

Section 3.2.3 investigates the noise reduction properties inherent in the redun-
dancy between frame vectors. These results quantify the noise reduction within a
subspace reconstruction. To completely quantify the noise reduction possible in this
distributed processing setting, we must also determine the noise reduction properties
due to the overlap between the subspaces. In other words, we need to extend the noise
reduction results known in frame theory to the theory of fusion frames. Section 3.4.1
calculates the noise reduction properties of overlapping subspaces, and Section 3.4.2
combines these results with the results of Section 3.2.3 to characterize the distributed
processing setting.

3.4.1 Subspace noise reduction

Let {Wi}L
i=1 be a fusion frame for the vector space R

N with fusion frame bounds
(As, Bs). The “coefficients” in this decomposition are the collection of vectors
{xi} ∈ V, where each vector is the projection of the input signal x onto a subspace,
xi = πi(x). The total collection of subspace projections is given by the fusion frame
operator, {xi} = Wx. Consider the case when the vector coefficients are corrupted
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independently with a noise vector,

x̂ = W†{(xi + ni)} = (W∗W)−1
∑

i

(xi + ni) ,

where the vector ni ∈ Wi has covariance matrix Γi. The linearity of W† implies
that (x̂− x) = (W∗W)−1∑

ini. Define ñ =
∑

ini, so that ñ has covariance matrix

Γ̃ =
∑

i Γi. Because multiplication affects the covariance in a quadratic way, the

covariance of (W∗W)−1
ñ is given by (W∗W)−1 Γ̃ (W∗W)−1. The total MSE of the

reconstructed signal therefore equals the trace of the covariance,

E
[
‖x̂− x‖2] = Tr

[
(W∗W)−1 Γ̃ (W∗W)−1

]
. (3.5)

As mentioned earlier, (W∗W)−1 is a bounded operator with bounds
(

1
Bs ,

1
As

)
.4 Ap-

pendix A calculates upper and lower bounds on the trace of a quadratic form that
directly yields bounds on the MSE per signal dimension,

Tr
[
Γ̃
]

N (Bs)2 ≤ E
[
‖x̂− x‖2]

N
≤

Tr
[
Γ̃
]

N (As)2 . (3.6)

Notice that the natural reconstruction for a fusion frame also reduces the noise in
the reconstructed signal by an amount that depends on the minimum redundancy.
As before, the bounds in (3.6) are not tight bounds. The MSE will only achieve the
extreme bounds in (3.6) when the frame of subspaces is tight (As = Bs).

3.4.2 Noise reduction under distributed processing

We now have the tools available to consider the noise reduction capability of a
redundant expansion under distributed processing requirements. Let {Wi}L

i=1 be a
fusion frame for the vector space H, with frame bounds (As, Bs). Let each subspace
be spanned by a collection of Ki vectors that locally form a frame for Wi with frame
bounds (Ai, Bi). When taken together, these vectors form a frame for H with bounds
(A, B). A signal x is represented by all of the vectors in the global frame, and
coefficients are corrupted by additive noise with subspace-dependent variance σ2

i .
For distributed reconstruction, local frame vectors are first used to reconstruct

the projection of the signal onto each subspace, x̂i. From equation (3.3), we have a
bound on the total MSE when reconstructing each xi = πi(x),

σ2
i N

Bi
≤ E

[
‖x̂i − xi‖2] ≤ σ2

i N

Ai
.

4Note that the “bounds” of a linear operator are equivalent to the minimum and maximum
eigenvalues of that operator.
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Distributed reconstruction x̂d is completed by using each x̂i as a corrupted coeffi-
cient in the fusion frame, x̂d = W†{x̂i}. The previous bound tells us that we can
view the subspace projections xi as being corrupted independently by an additive
noise vector ni ∈ Wi, with covariance matrix Γi that has bounded total variance
σ2

i N

Bi
≤ Tr [Γi] ≤ σ2

i N

Ai
. If we define Γ̃ =

∑
i Γi, applying equation (3.6) upper bounds

the MSE per signal dimension,

E
[∥∥x̂d − x

∥∥2
]

N
≤

Tr
[
Γ̃
]

N (As)2

≤ 1

(As)2

L∑

i=1

σ2
i

Ai

≤ Lσ2
max

Amin (As)2 . (3.7)

Using the same technique in the opposite direction we can also write a lower bound
on the MSE per signal dimension

E
[∥∥x̂d − x

∥∥2
]

N
≥ Lσ2

min

Bmax (Bs)2 .

Frame reconstruction with our distributed processing constraint has the power to
reduce noise in the reconstructed signal by an amount that depends on the minimum
redundancy of both the fusion frame, and the individual local frames that span the
subspaces. From the derivation of this bound, it is clear that these bounds are also not
tight and are only achieved in the special case when the fusion frame is tight (As = Bs)
and the local frames are all tight with the same bounds (Ai = Amin = Bi = Bmax, ∀i).

3.4.3 Comparison of centralized and distributed processing bounds

Section 3.2.3 mentions that the pseudoinverse operator for a frame is the unique
linear operator that achieves maximum noise reduction. Consequently, we know that
no other linear reconstruction scheme (including the distributed processing of section
3.4.2) can perform better than the centralized processing scheme that uses the pseu-
doinverse operator for the global frame (i.e., all frame vectors considered together
at once). In fact, the distributed reconstruction operator is optimal only over linear
operators that factor (using local frame analysis and synthesis operators Φi and Φt

i)
into

W† =
[

(W∗W)−1 . . . (W∗W)−1
]



(
Φt

1Φ1

)−1
Φt

1
...(

Φt
LΦL

)−1
Φt

L


 .
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We must quantify the penalty in noise reduction a distributed processing scheme
incurs compared to centralized processing. From section 3.2.3, considering the collec-
tion of local frames together yields a global frame for H with lower and upper bounds
A ≥ AsAmin and B ≤ BsBmax. Using a simple extension of equation (3.3) (with
unequal noise power) tells us that a centralized reconstruction of x using the global
frame directly, x̂c, would yield an upper bound on the MSE per signal dimension of

E
[
‖x̂c − x‖2]

N
≤ σ2

max

A
≤ σ2

max

AsAmin
.

Comparing this bound to the MSE upper bound in (3.7) when using the distributed
scheme, we see that (because L ≥ As) the upper bound using the centralized approach
is better than the distributed reconstruction by a factor of L

As . While these are not
tight bounds on the error, they hint at the potential for the distributed reconstruction
to perform worse than the centralized scheme and give a bound on the performance
reduction.

It is also interesting to consider conditions under which the noise reduction ability
is the same for distributed and centralized processing. Consider the case when all
of the local frames have the same number of vectors

(
Ki = K

L

)
and are tight frames

with the same frame bounds, Ai = Amin = Bi = Bmax, ∀i. In this case, the global
frame has frame bounds A = AsAi and B = BsBi. If the fusion frame is also tight
(As = Bs), the global frame will additionally be tight with bounds A = B = K

N
. If

the noise has equal power in each subspace (σ2
i = σ2), then we show in Appendix B

that the MSE per signal dimension under both processing schemes is equal,

E
[
‖x̂c − x‖2]

N
=

E
[∥∥x̂d − x

∥∥2
]

N
=

σ2N

K
.

Though the conditions proposed here for equal noise reduction may seem restrictive,
a result from [73] regarding random frames indicates that frames will become tight
asymptotically as more random vectors are added. Therefore, systems where ran-
dom vectors are randomly assigned to a local subspace will asymptotically meet the
conditions for achieving the optimal (centralized) noise reduction.

3.4.4 Numerical example

Figure 3.2 compares the noise reduction properties of a centralized and distributed
reconstruction in H = R

3. Frame vectors were generated at random (uniformly
distributed in R

3) and assigned to one of five possible subspaces. Centralized and
distributed reconstructions using noisy coefficients (σ2

i = 1) are performed and the
average reconstruction error is plotted. The centralized scheme always outperforms
the decentralized scheme, though the performance tends to become similar as more
vectors are added and the frames become tighter.
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Figure 3.2: An example of the noise reduction properties for in centralized and distributed
reconstruction. Vectors are randomly placed in R

3 and separated into five subspaces. Noisy
coefficients are used for both centralized reconstruction (using the global frame) and dis-
tributed reconstruction (using local reconstruction followed by fusion frame reconstruction).

3.5 Summary and Future Work

3.5.1 Summary of contributions

In redundant expansions, assessing the noise reduction capability of the represen-
tation is an important consideration. In this chapter, we have extended the known
noise reduction results for additive noise to modulation onto a Poisson counting pro-
cess. This model is more realistic than additive noise models for neural communica-
tion. We have shown that the Poisson process noise reduction in a frame parallels
the known results for additive noise, with the complication that the noise variance is
now signal dependent.

When distributed reconstruction is required by the system, assessing the noise
reduction capability is further complicated. It would be intuitive to think that dis-
tributed reconstruction would always incur a penalty over the optimal centralized
case. However, in this chapter we have shown at least one condition (there may be
more) where the distributed system can be constructed to suffer no penalty compared
to centralized reconstruction. Additionally, we provide bounds on the performance
penalty in the more general case when distributed reconstruction is suboptimal.
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3.5.2 Future directions

The results of this chapter could characterize the fundamental noise reduction
potential of many distributed systems, including neural populations and distributed
sensing systems. However, in many of these settings “noise” is only one type of failure
typically encountered. Many systems composed of collections of simple nodes often
encounter individual node failures. These failures can be thought of as removing
a coefficient from the frame reconstruction (known as an “erasure”). The effect of
erasures on a system is much more difficult to analyze. Previous work has started
to investigate the effect of erasures, but only in the case of noiseless coefficients [79]
and centralized reconstruction schemes [73]. We will pursue a characterization of the
effects of erasures in noisy systems under distributed processing constraints.
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Chapter 4
Managing Redundancy for Decentralized Action:

Distributed Strategies for Wireless Sensor and

Actuator Networks

One of the primary difficulties present when employing overcomplete representa-
tions is that they require coordination in either the encoding or decoding phase to
account for the redundancy. This is illustrated in Section 2.1.3 by the fact that the
typical reconstruction equation for an ONB does not work for a frame; reconstructing
a signal from the canonical frame coefficients requires the use of a dual frame.

In a redundant sensing system, the overlap between adjacent sensor receptive fields
must be accounted for before the data is used. When the goal is to induce action in the
environment via a collection of redundant actuators, coordination is complicated even
further. The simplest approach to achieving the necessary coordination is to have a
centralized coordinator that collects all of the sensed data and makes the actuation
decisions. However, in a distributed system data centralization is antithetical to the
goal of using distributed data representations. In this chapter, we explore strategies
for efficient distributed decision-making within the context of wireless sensor and
actuator networks.

4.1 Wireless Sensor and Actuator Networks

Recent interest in wireless sensor networks (WSN) has led to increased research in
many areas central to distributed data processing, including novel information pro-
cessing, communications, and networking strategies [25,57,159]. Energy conservation
to increase the functional life of the WSN is very important because the battery-
powered sensors may be difficult (or impossible) to access on a large scale for main-
tenance. This energy conservation principle generally translates into minimizing the
communication among sensors to preserve both individual node power and total net-
work throughput. Basic research in communications and networking can improve the
efficiency in transporting data from one location to another in the network. However,
these aspects are limited by the underlying information processing strategies that de-
termine the type and amount of data that needs to be transported within the network
to achieve the application goal. Consequently, much of the recent sensor network re-
search has focused on adapting well-known signal processing algorithms to distributed
settings where individual sensor nodes perform local computations to minimize the
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information that needs to be passed to more distant nodes (e.g., [9, 42, 108, 124]).
Many WSN algorithms start with the assumption that information contained in

sensor measurements must be communicated to a destination (called a sink, or a
fusion center) accessible by the WSN operator. In these applications, the sink rep-
resents the notion that the data collected in the WSN is only valuable to the extent
that it can be removed from the network. However, in many applications the implicit
assumption is that the information coming out of the network will be used to monitor
the environment and take action (i.e., affecting the sensed environment) when neces-
sary. One example of this is in agricultural irrigation. Soil moisture measurements
are taken precisely so irrigation levels can be adjusted to improve growing conditions
while conserving as much water as possible [102].

A significant and natural extension to the sensor network paradigm is a wireless
sensor and actuator network (WSAN). A WSAN consists of a network of sensor nodes
that can measure stimuli in the environment and a network of actuator nodes capable
of affecting their local environment [1]. With direct communication from sensors to
actuators, WSANs can achieve the application goals without aggregating the infor-
mation in a single location or removing it from the network. In this way, WSANs can
approach the robust and efficient ideal embodied in the mantra “the network is the
processor”. Using only local communications may become even more important in
applications where the sensor nodes are deployed in conditions very hostile for wireless
communications (e.g., under a layer of soil). Such hostile environments deteriorate
the wireless channel and significantly reduce the realistic communication distances [2].
While WSAN applications open the door for in-network processing, optimal WSAN
information processing strategies may be very different from the strategies developed
for WSN applications. Sensor processing and communication strategies that blindly
optimize sensor data fidelity may not yield the best results when actuation is involved.
Information strategies in the WSAN must be designed with the final actuation per-
formance fidelity in mind. While WSANs are often discussed as extending the WSN
paradigm, quantitative analysis of their performance has received little attention.

The task of merging sensed information directly into actions efficiently without
centralizing the information and decision making is difficult primarily because of the
redundancy among the sensors and actuators. The coordination necessary to resolve
this overlap must be built into the behavior of each individual node if no centralized
controller will be used. Fortunately, distributed sensing and actuation occurs in
biology where neural systems perform a chain of tasks very similar to the needs
of WSANs: sensing, analysis, and response. Furthermore, evidence indicates that
neural systems represent and process information in a distributed way (using groups
of neurons) rather than centralizing the information and decision making in one single
location. This shrewd strategy avoids creating a single point of vulnerability, so the
system can function in the presence of isolated failures.

In neural systems, two types of behaviors exist, depending on whether there is
“thinking” involved, which we call conscious and reflex behaviors. In conscious be-
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havior biological systems gather sensory information, make inferences from that in-
formation about the structure of their environment, and generate actions based on
that inferred structure. In reflex behavior, a sensed stimulus directly generates an
involuntary and stereotyped action in the peripheral nervous system before the brain
is even aware of the stimulus [87]. An obvious example of a reflex behavior is the
knee-jerk reaction achieved by a doctor’s well-placed tap below the kneecap. A more
subtle example is the eye position correction that allows our vision to stay focused
on an object even when our head is moving.

WSAN applications have an analogous division, which we call object-based and
measurement-based network tasks. For example, the canonical target tracking sce-
nario is an object-based task because it involves using sensory measurements to infer
information about objects in the environment. On the other hand, an application
such as agricultural irrigation is a measurement-based task because sensor measure-
ments directly contain all the information necessary to take action — there is no
underlying environmental object to try to infer. In this thesis we consider models
of measurement-based WSAN applications. While measurement-based systems are
simpler and possibly more limited than object-based systems, they provide an entry
point for analyzing and designing WSAN algorithms.

This chapter presents a WSAN model based on the principles observed in a crayfish
ocular reflex behavior. We show that linear control laws are exactly implementable
using completely decentralized strategies (i.e., no centralized controller) even when
the sensing and actuation systems are highly redundant. Extending the vector space
models of the sensing process described in Section 2.1.2 to include the actuation
process, we demonstrate that each sensor-actuator link has an associated importance
value/ This metric can be used to efficiently determine which communication links
are least important to the final actuation fidelity and can be eliminated to conserve
power.

Finally, we consider the optimal power scheduling problem for this WSAN model
in an inhomogeneous sensing environment. Optimal WSAN resource allocation re-
quires us to consider not only the importance of a single sensor measurement value
to the final actuation fidelity, but also the reliability of that measurement and the
energy required to communicate it to its destination. These factors represent compet-
ing interests and must all be considered jointly when determining the optimal power
allocation for each communication link in the WSAN application. Inspired by recent
work for power scheduling in decentralized estimation [157], we propose and solve the
optimal power scheduling problem for this WSAN model.

4.2 Background and Related Work

As an example reflex behavior that will shape our thinking about WSANs, we
consider the crayfish visual system. The crayfish has a dorsal light reflex [105] where
light movement in the visual field elicits a predictable reflex movement in the eyestalk
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that attempts to keep a constant orientation of the visual field. The main visual
representation is comprised of sensory neurons (called “sustaining fibers”) that sum
light activity in overlapping spatial regions. All of the information available to the
creature about the light stimulus is contained in this collection of sustaining fiber
responses [91, 92, 137, 153].

The crayfish eyestalk movement is controlled by a set of motorneurons that send
signals to several small muscles. Each muscle generates movement in one specific
direction. As with the sensory units, the muscle movement directions overlap in the
movement space (i.e., muscle movements are not “orthogonal”). Most importantly,
motorneuron activity is determined directly from a weighted combination of sustain-
ing fiber inputs. Though all of the motorneurons have to be coordinated to produce
the desired total action, their distributed individual responses are generated directly
from the distributed sustaining fiber representation without a centralized decision-
making structure. Previous research has shown that even in this critical behavior the
contributions of each sensory unit to the total action are essentially linear [72].

Our WSAN model will follow the principles seen in this example from the crayfish.
Though the constraints facing biological systems are different from the constraints
imposed by wireless networking, neural systems must also be very resource efficient
and try to minimize communication to conserve metabolic energy. Biological systems
must have solutions that do a good job (some would even argue optimal) at trading-off
performance and efficiency, and we use them as a rough guide.

In our model, a collection of sensors measuring overlapping spatial regions gather
information about a stimulus field. A collection of actuators have individual environ-
mental effects that overlap and must be coordinated. Each actuator determines its
individual contribution to a behavioral goal through a weighted combination of the
sensor measurements. The actuators do not communicate directly with one another
but their behavioral decisions take into account what the other actuators in the net-
work will be doing. In this simplest communication scenario with no inter-sensor and
inter-actuator communication, we eliminate the communication overhead necessary
for explicit cooperation. It may be possible to improve system performance by allow-
ing additional communication and cooperation, depending on the specific networking
model and communication costs involved.

A major goal in any WSAN information processing strategy is retaining good
actuation performance while reducing the communication burden from the sensors
to the actuators. To analyze the performance of a WSAN under different design
decisions, we require a model of the physical sensing and actuation process. We
extend the tools of frame theory to include the actuation process, giving us a set of
mathematical tools to quantify the interaction of the WSAN with the environment.

4.2.1 Vector space sensor and actuator models

Sensor network models often begin with a collection of sensors distributed over
a 2-D spatial field limited to the spatial domain Ω (e.g., Ω = [0, 1]2). Sensors are
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indexed by k ∈ K, and are located either irregularly or on a regular grid. The spatial
region being sensed contains a stimulus field, denoted by x(ω), where ω ∈ Ω indicates
location in the field. Sensor measurement models often consist of averaging the stim-
ulus field over non-overlapping spatial regions surrounding each sensor (e.g. [109]).
Using the abstracted sensing system described in Section 2.1.2, we generalize this
typical model by representing each sensor with a receptive field φk(ω) over Ω that
performs a weighted average over a spatial region.

Specifically, we assume that the collection of sensors represented by {φk}
form a frame for a (finite dimensional) vector space of environmental signals
Hx ⊆ span ({φk}), with x ∈ Hx. We suppress the explicit notation of spatial lo-
cation ω for brevity. This sensor frame has frame bounds (As, Bs) and dual functions

given by {φ̃k}. As in Section 2.1.2, the sensor receptive field would be defined by the
physics of the device and could indicate sensors that are directional or have varying
sensitivity over a region. As before, ideal sensor measurements of the field are given
by the inner product

mk = 〈x,φk〉. (4.1)

We will not assume any particular arrangement or shape of the sensor fields; in general
we expect sensors to be irregularly spaced and have highly overlapping receptive fields.
The measurements described above could also be offset by an additive factor to form
relative measurements from a nominal or desired value. These additive terms do not
affect our analysis and will not be explicitly notated.

Just as individual sensors have local but overlapping regions of sensitivity, actuator
networks are composed of individual actuators that each can affect the environment
through (possibly overlapping) local regions of influence. Actuators are indexed by
l ∈ L, and again are located either irregularly or on a regular grid. Whereas each
sensor is represented by a receptive field, each actuator is represented by an influence
field over Ω, denoted by a function ψl(ω). As with the sensor receptive fields, an
actuator’s influence field depends on the physics of the specific device and the sur-
rounding medium. In the agricultural irrigation example, the actuator influence field
may represent the water delivery pattern of the sprinkler elements. Additionally, the
influence field function ψl(ω) may also incorporate the physics of the environment,
such as the water absorption or runoff rates of the soil.

Each actuator responds with an intensity that indicates how strongly it acts on
the environment. We will model an actuator’s intensity dl as weighting its influence
function. The resulting total actuation field y over Ω is

y =
∑

l∈L

dlψl,

where we again suppress the explicit notation of the spatial domain ω. The collection
of actuators can therefore cause any actuation field y in a (finite dimensional) signal
space Hy ⊆ span ({ψl}). Just as with the sensors, we assume that the collection of
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actuators represented by {ψl} form a frame for Hy with frame bounds (Aa, Ba) and

with dual functions given by {ψ̃l}.
It is critical to note that the collection of sensors {φk} and actuators {ψl} do not

share many characteristics; they can have different numbers of elements at different
locations over Ω. Most importantly, individual sensor and actuator functions can
have different shapes and even involve different modalities (e.g., temperature sensors
and water delivery actuators). Consequently, Hx and Hy can be very different spaces
of functions, and defining them in terms of general vector spaces allows us to make
connections between the sensed inputs and the resulting actuated outputs. Also note
that the dual sets {φ̃k} and {ψ̃l} are not realized directly in physical systems. For ex-

ample, the sensor receptive field dual functions {φ̃k} may have spatial characteristics
that would be impossible to build into any type of real-world sensor.

In order to design effective communication strategies between sensors and ac-
tuators (each represented by a frame), we need to understand the consequences of
inducing imperfections in a frame coefficient. Section 2.1.4 analyzed the reconstruc-
tion error in a general frame when the coefficients are perturbed. We will draw on
these results to understand the impact of reducing communication costs in a wireless
sensor and actuator network by approximating the ideal communications required to
implement the desired control law.

4.2.2 Other related work

While WSANs are often discussed, there has not been much work quantitatively
analyzing their performance. Existing work can be found in areas such as software
development models for WSANs [98] and heuristic algorithms for resource competition
based on market models [69]. Other recent work [21] uses techniques from causal
inference to evaluate specific actuation strategies. None of the current approaches
address quantitative methods for decentralized WSAN implementations.

4.3 Connecting Sensors to Actuators

4.3.1 WSAN actuation strategies

A specific WSAN application is defined by its goal. Given an environmental
signal, the goal defines the optimal behavior of the system in terms of the actuated
response. For example, in the agricultural irrigation scenario the goal would be to
keep the measured soil moisture values close to a predetermined set-point [102]. In
an insect repellent application, the goal may be to deliver insecticides based on the
measurements of temperature and humidity sensors [111]. For any measured stimulus
field x, we assume that there is a linear behavior mapping B : Hx → Hy that defines
the ideal actuation field response, y = Bx. The mapping B would be determined
as a design specification for the WSAN in advance, and we assume that it remains
fixed over a duration between WSAN calibrations. Such a control law based strictly
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on the current measurements obviously does not encompass every interesting WSAN
application (e.g., target tracking and pursuit). However, such a control strategy does
cover a number of significant settings, and our analysis will be limited to applications
that fall into this class.

The mapping B may reflect either an open- or closed-loop control scheme, de-
pending on the nature of the application and whether the actuator activity is reflected
directly in the sensors. In a closed-loop scenario, the linear mapping B is analogous
to a proportional controller [66]. As one specific closed-loop example where the input
and output spaces are equal, assume that the user has specified a desired environ-
mental field x0 as a set point for the system. For example, a farmer may specify the
desired moisture levels of a field containing several different types of crops. In this
case, we may want the current environmental field with the addition of the actuated
field to be equal to the set point, x0 = x + y. One simple actuation strategy would
to apply the identity mapping (B = I) to the difference of the desired and the actual
environmental field, y = x0 − x.

4.3.2 Decentralized strategy for optimal actuation

Following our example of reflex behavior, actuators must calculate their activity
levels using weighted combinations of sensor measurements without communicating
with the other actuators. The overlapping influence fields of the actuators prevent
a purely greedy approach where each actuator generates the locally optimal activity.
Nearby actuators could be nearly identical and wildly overcompensate their actions in
a greedy approach. Sensors and actuators must together have coordinated behavior
that accounts for the components of the action field that other nodes must be covering.

Given a specified actuation function B and a current environmental field x, an
ideal actuator network would have each node determine action coefficients {dl} to
generate the optimal response y = Bx =

∑
l∈L dlψl. Drawing on the frame theory

results from Section 2.1.3, the coefficients weighting the action influence field vectors
are given by the inner products between the actuation dual vectors and the optimal
action signal that we are trying to generate,

dl = 〈ψ̃l,Bx〉. (4.2)

To determine the optimal action coefficients, consider first the reconstruction equa-
tion for the stimulus field based on the sensor measurements,

x =
∑

k∈K

mkφ̃k. (4.3)

Substituting (4.3) into (4.2), the optimal action coefficients are

dl = 〈ψ̃l,B
∑

k∈K

mkφ̃k〉 =
∑

k∈K

mk〈ψ̃l,Bφ̃k〉 =
∑

k∈K

wk,l mk, (4.4)
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where wk,l = 〈ψ̃l,Bφ̃k〉 is a weighting factor involving the dual frame vectors. The

conversion from sensor measurements m =
[
m1, m2, . . . , m|K|

]t
to actuator intensity

coefficients d =
[
d1, d2, . . . , d|L|

]t
in matrix form is d = Vm, where

V =




ψ̃t
1Bφ̃1 ψ̃t

1Bφ̃2 · · · ψ̃t
1Bφ̃|K|

ψ̃t
2Bφ̃1

. . .
...

...

ψ̃t
|L|Bφ̃1 · · · ψ̃t

|L|Bφ̃|K|




=




w1,1 w2,1 · · · w|K|,1

w1,2
. . .

...
...

w1,|L| · · · w|K|,|L|


 .

The expression in (4.4) (or equivalently the entries of V) illuminate the form of
the actuator intensity coefficients necessary to generate the optimal total action Bx.
Unfortunately, each coefficient dl is a sum including sensor measurements φk over all
k ∈ K; each individual actuator would require knowledge of every sensor measurement
in order to generate an optimal actuation intensity.

A scenario where every sensor in the network communicates its measurement to
every actuator would present an unreasonable communication burden on the network
(approximately |K| · |L| communication links would be necessary). While a portion
of this burden could be reduced through broadcast communication, some sensor-to-
actuator links may involve several communications in a multi-hop routing scheme.
Any realistic networking scheme will have to eliminate some of these communication
links based on their communication cost and their contribution to the total actuation
performance.

Intuitively, some sensor measurements will be more important than others in de-
termining an actuator’s behavior. For example, a moisture sensor spatially located a
long distance away from the influence field of a specific irrigation actuator will likely
have very little relevance on that actuator’s optimal behavior coefficient. Especially
if the sensor measurement was insignificant, this particular communication link could
likely be eliminated with no substantial effects to the actuation fidelity [134]. Like-
wise, a nearby sensor-actuator pair with a poor communications channel between
them would not benefit from a high-fidelity transmission. The bitrate on this channel
could be dramatically reduced because the quantization errors would still be insignif-
icant compared to the communication errors [135]. These two types of strategies for
reducing the communications power will be considered in the following sections.

4.4 Pruning Communication Links

Each entry of the matrix V indicates a communication link from a sensor to an
actuator. Before blindly reducing communications, a networking scheme must know
the importance of each possible communication. In a WSN, performance is often
judged by assessing the fidelity of the information at the sink, using the distortion of
either the original sensor measurements or the underlying stimulus field as the metric.
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However, the only performance metric of any consequence in a WSAN is the fidelity
of the resulting total action.

4.4.1 Quantifying the cost of pruning

To quantify the importance of individual communications, we must determine
how the total actuation performance is affected when a communication is not ex-
ecuted. Consider the case where for actuator l, a subset of sensor nodes Rl ⊂ K
do not transmit their measurement coefficient to this actuator (called an “erasure”
in the frame literature [73]). Instead of optimal actuator intensity coefficients given
in (4.4), actuators form approximate intensity coefficients using the received sensor
measurements

d̂l =
∑

k∈(K\Rl)

mk〈ψ̃l,Bφ̃k〉. (4.5)

The approximate actuator intensities generate a total action field approximating the
desired optimal action Bx,

ŷ =
∑

l∈L

d̂lψl.

Generating a total action field with the approximate coefficients {d̂l} is equivalent
to performing a frame reconstruction with perturbed coefficients, as described in Sec-
tion 2.1.4. Subtly, the actuator frame vectors are performing synthesis, meaning that
dual vectors (with lower frame bound 1

Ba
) are now the analysis set. Therefore, (2.2)

relates the fidelity of the approximate actuator intensity coefficients to the fidelity of
the resulting total action field,

‖Bx− ŷ‖2 ≤ Ba

∑

l∈L

|dl − d̂l|2.

Using equations (4.5) and (4.4), we can write the total action field error in terms of
individual sensor coefficients not communicated to actuator nodes

‖Bx− ŷ‖2 ≤ Ba

∑

l∈L

∣∣∣∣∣
∑

k∈Rl

mk〈ψ̃l,Bφ̃k〉
∣∣∣∣∣

2

(4.6)

≤ Ba

∑

l∈L

∑

k∈Rl

∣∣∣mk〈ψ̃l,Bφ̃k〉
∣∣∣
2

. (4.7)

As we see in (4.7), the networking strategy for sensor node k can use the value

of
∣∣∣mk〈ψ̃l,Bφ̃k〉

∣∣∣
2

to quantify the maximum contribution it would make to the total

action error by not communicating its measurement to actuator l. The bound in (4.7)
can be used to set a threshold λ guaranteeing an absolute upper limit on the actuation
error.
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Importantly, the form of the error bound in (4.7) isolates each communication link
as an independent term so that no communication overhead is required to determine
the absolute worst actuation error that can be incurred by eliminating a communi-
cation link1. In applications where a WSAN must respond quickly to critical but
rare events (e.g., a fire suppression system), an absolute bound on the actuation er-
ror computed locally is probably appropriate. To ensure that the actuation error is
within an absolute tolerance, the active communication links between sensors and
actuators will necessarily change depending on the input signal. While this dynamic
decision making does not impose a large computational burden on the sensor nodes,
the underlying communications network must be able to handle large fluctuations in
demand for resources.

The overlap in sensor and actuator fields mean that contributions from two dif-
ferent sensor measurements to an actuator coefficient could, in effect, “cancel” each
other. Because the error bound provided in (4.7) is expressly written in terms of lo-
cal sensor node measurements, this bound favors a conservative interpretation rather
than accounting for these interactions. Given a specific communication and net-
working scenario, it may or may not be advantageous to allow sensors to explicitly
communicate to calculate a tighter error estimate (based on the original error ex-
pression in (2.1)) and coordinate their communication accordingly. While the frame
theoretic analysis paradigm introduced here would allow such an analysis, it would
necessarily be specific to the application details (particularly the communication and
networking scenario).

4.4.2 Pruning for expected behavior

In many settings, designing around an absolute error constraint results in a system
that is too conservative in its average behavior. To analyze the average actuation error
one must assume a stochastic model for the measurements, such as assuming that the
sensor measurements have zero mean (E [m] = 0) and covariance matrix Γm. The
covariance matrix Γm will be determined by a combination of the sensor receptive
field properties and the distribution assumed on x within the signal space Hx. Only
the first two moments of the distribution on m are relevant, so we need not assume
Gaussian distributions.

Average WSAN performance is much easier to calculate if we recast (4.6) using
matrix notation. We first need to write approximate actuator coefficients in (4.5) in
terms of a perturbation of V, which captures the ideal transformation from sensor
measurements to actuator coefficients. Let the approximate actuator coefficient vector

be given by d̂ =
(
V + Ṽ

)
m, where the matrix Ṽ is defined to remove inactive

1We are assuming that the setup phase of the WSAN has given nodes information about the
relative locations of their neighboring nodes that can be used to calculate the necessary inner product.
Efficient and accurate node localization is an ongoing branch of WSN research (e.g., [8,83,95,117]).

36



Lab 1 Lab 2

Lab 3 Lab 4

Exit

(a)

Lab 1 Lab 2

Lab 3 Lab 4

Exit

(b)

Lab 1 Lab 2

Lab 3 Lab 4

Exit

(c)

Lab 1 Lab 2

Lab 3 Lab 4

Exit

(d)

Figure 4.1: Example sensor/actuator locations and shapes for a simple fire suppression
example. (a) Contour plot of an example sensor receptive field. (b) Contour plot of an
example actuator influence field. (c) Position and single iso-contour of the sensor node
receptive fields. (d) Position and single iso-contour of the actuator node influence fields.

communication links:

Ṽk,l =

{
−
(
ψ̃t

lBφ̃k

)
if k ∈ Rl

0 if k ∈ (K \Rl).

Incorporating this definition into (4.6) and taking the expectation of both sides lets
us bound the average error

E
[
‖Bx− ŷ‖2] ≤ BaTr

[
ṼΓmṼ

t
]
, (4.8)

where Tr [·] is the trace operator.
A system designer could use (4.8) to characterize (on average) how important a

communication link between a specific sensor and actuator pair is to generating the
total actuation field. Using this information, a WSAN design could specify which
communication links between sensors and actuators are active. Such a scheme has
the disadvantage that it may not react well to events that are large deviations from
the usual behavior. However, non-adaptive WSAN communication schemes can use
communication resources more efficiently most of the time, limit the network com-
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Figure 4.2: Contour plots of sample temperature fields and optimal actuation fields. (a) A
sample temperature field for test signal 1 indicating a fire in lab 3. (b) A sample temperature
field for test signal 2 indicating a fire in lab 2. (c) Optimal actuation response for test signal
1. (d) Optimal actuation response for test signal 2. Different spatial response characteristics
in the actuation response keep the main exits clear.

munication burden for any stimulus field, and more easily integrate the real cost
of executing individual communication links (through a possibly multi-hop network)
into generating an optimal strategy. Also, it is worth noting that the bound in (4.8)
is tighter than the bound in (4.7) (because it is based directly on (4.6)), reflecting
the fact that all of the communication links can be considered jointly when designing
the system for average error performance.

4.4.3 An example WSAN system

As an illustrative example, consider a WSAN operating a stylized fire suppres-
sion system in an office building with four research labs. The building space is cov-
ered with a network of 21 temperature sensors (modeled with radially symmetric,
exponentially-decaying receptive fields) and 13 actuators (modeled with an oriented
and exponentially decaying influence field), all illustrated in Figure 4.1. This WSAN
has 273 possible communication links from the sensor nodes to actuator nodes.

The actuation response is generated for both test signals using threshold values
of λ = 0.2 and λ = 0.05, and the resulting total actuation fields are plotted in
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Figure 4.3: Importance measurements and connection diagrams for each communication

link. (a) The importance measurements of each communication link
(∣∣∣mk〈ψ̃l,Bφ̃k〉

∣∣∣
)

are

sorted and plotted for the two test signals. (b) Connection diagrams for the two test signals
under the two thresholds in the example system. Sensor nodes are marked with a blue (+)
and actuator nodes are marked with a red (*). Active connections from a sensor to an
actuator are denoted by a blue line.
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Figure 4.4: Contour plots of actuation responses when using only a subset of possible
communication links. Links are pruned by thresholding each link’s importance to the total
actuation. (a) Approximate responses to test signal 1 when using 14 communication links.
(b) Approximate responses to test signal 1 when using 40 communication links. (c) Ap-
proximate responses to test signal 2 when using 17 communication links. (d) Approximate
responses to test signal 2 when using 45 communication links.

Figure 4.4. The reduced communication scheme based on the thresholds resulted
in the number of active communication channels and associated percentage errors
given in Table 4.1. The principles discussed in Section 4.4.1 allow the WSAN to
generate excellent approximations to the optimal actuation field by using local rules
to activate only a fraction of the communication links. Interestingly, if we activate the
same number of links using the more intuitive measure |mk〈ψl,Bφk〉|, the resulting
actuation error increases by roughly an order of magnitude.

We specified a function B mapping the temperature inputs to an imaginary desired
fire suppression output. To illustrate that this mapping may be spatially varying, we
note that fire activity in all labs will induce fire suppression activity along a path
to the main exit. We used two sample temperature fields indicating a fire in differ-
ent labs areas (shown in Figure 4.2, along with optimal responses). As discussed in

Section 4.4.1, the quantity
∣∣∣mk〈ψ̃l,Bφ̃k〉

∣∣∣ determines the importance of each com-

munication link (sorted and plotted in Figure 4.3 for these test signals). When a
measurement is taken, we allow communication on a link only when the importance
value is greater than the threshold λ. In these signals, a threshold of λ = 0.2 allows
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Table 4.1: Results from the example WSAN fire suppression system.

λ = 0.2 λ = 0.05 λ = 0.2 λ = 0.05

Active links 14 40 Active links 17 45

Relative error 2.22% 0.04% Relative error 2.46% 0.15%

Test signal 1 Test signal 2

approximately 15 of the 273 possible communication links to be active, and λ = 0.05
allows approximately 40 active communication links. The resulting active communi-
cation links are shown in Figure 4.3. Close examination of the connection diagrams
shows that some communication choices are non-obvious; the most important sen-
sor to a particular actuator is not always the one with heavily overlapping influence
functions.

4.5 Optimal Power Scheduling

Each communication in the WSAN setting contributes to the actuation fidelity
based on the interplay of several factors, including the measurement reliability, the
transmission fidelity, the communication channel quality, the measurement value, and
the specific sensor-actuator pair in the WSAN topology. Section 4.4 details an anal-
ysis of an adaptive situation where sensors prune communication links based on a
combination of the measurement value and the overall importance of that sensor-
actuator pair in the actuation fidelity. This pruning strategy has the advantage of
being adaptive (i.e., depending on the sensor’s measurement), but does not consider
the fidelity of a link or the cost of performing that communication. In essence, all
communications are considered equally costly and equally precise. This section will
consider the WSAN design problem of optimally allocating communication resources
to each link depending on the reliability of that measurement and the energy re-
quired to communicate it to its destination. We propose and solve the optimal power
scheduling problem for this WSAN model by determining the optimal bitrates that
each communication link should use when jointly considering the sensor noise, quan-
tization noise and channel errors.

Specifically, we consider a set of k sensors, each recording the ideal measurement
corrupted by additive noise due to sensor imperfections:

ms
k = mk + ns

k = 〈x,φk〉 + ns
k.

We assume that the sensor noise is zero mean with variance E
[
(ns

k)
2] = σ2

k, but
the distribution is otherwise unknown. Note that in general, the sensors can be
inhomogeneous with different local signal-to-noise ratios. We further assume that the
measurements lie in the range ms

k ∈ [−∆, ∆]. Note also that depending on the form
of the actuation law, the sensor may record the difference from a nominal value (or

41



d
1

m
1

s

actuators

m
K

sensors

d
Ls

m
1,1

t m
1,1
r

m
1,L

t

m
K,L

t

m
K,1

t

m
K,1

r

m
1,L
r

m
K,L
r

Figure 4.5: A schematic of the communications pathways in the WSAN model. The
kth sensor makes a noisy reading ms

k. The quantized measurement mt
k,l with βk,l bits of

precision is sent to the lth actuator. After incurring bit errors in the wireless channel, the
measurements mr

k,l are received by the actuator and used to form the approximate actuation

coefficient d̂l.

a set point) instead of an absolute measurement. We will not notate this explicitly
because a mean shift is irrelevant to the subsequent noise analysis.

The ideal actuation coefficient for the lth actuator is a weighted combination of the
ideal sensor measurements (shown in (4.4)), where the weights {wk,l} are determined
by the actuation strategy as described in Section 4.3.2. However, each actuator
must quantize its measurement and send it with some finite precision along a noisy
communications channel to each actuator. An inherent rate-distortion tradeoff exists
for a single actuator coefficient: higher fidelity in the estimated actuator coefficient
requires higher precision in the transmitted measurements, but sending more bits
expends more energy. The optimal power scheduling problem results from realizing
that not all sensor coefficients are equally reliable or important to a given actuator,
and the variable distances among the nodes creates an inhomogeneity in the cost of
each communication link. The fidelity of each communicated message can be chosen
through using a variable number of bits (including zero) on each communication
path to optimally use the system resources. To set up the optimal power scheduling
problem, we must have both a model for the communications scheme that calculates
the relative transmission power needed to communicate each bit and a model of the
distortion that calculates the relative error reduction for each bit of precision.

4.5.1 Communication energy model

We first consider the transmission energy required to communicate the measure-
ment ms

k from sensor k to actuator l. Following previous work in decentralized es-
timation in the WSN context [30, 31, 157], we assume that sensors communicate to
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an actuator over a wireless link using a M-order quadrature amplitude modulation
(MQAM) strategy and following a common multiple access scheme (e.g., time-division
multiple access) [122]. If sensor k sends βk,l bits of precision about its measurement
to actuator l, the MQAM scheme will have a constellation with 2βk,l symbols. We also
assume that the transmission scheme is designed with a fixed bit error probability of
p over an additive white Gaussian noise (AWGN) channel.

We expect that to achieve a fixed bit error rate, nodes will require higher transmis-
sion energy when we increase the number of bits being communicated. In previous
work [30, 31, 157], an upper bound on the transmission energy under this MQAM
transmission scheme is estimated to be

Pk,l ≤ κdα
k,l

(
2βk,l − 1

)
ln

(
2

p

)
,

where dk,l is the distance between the sensor and actuator, α is the fading coefficient
of the transmission medium, and κ is a constant depending on several aspects of
the communication environment (e.g., channel signal-to-noise ratio, antenna gain,
coding gain, etc.). This expression applies for coded or uncoded MQAM, though κ
will change when error correcting codes are used. We take κ to be a constant for
all communication links in the system and we estimate the relevant portion of the
transmission power for a measurement by the upper bound

Pk,l ∝ dα
k,l

(
2βk,l − 1

)
. (4.9)

If the communications scenario is inhomogeneous, additional link-dependent con-
stants can be introduced without significant difficulty. While the constants being
left out of this expression are critical for determining the exact amount of transmis-
sion energy required, they are not necessary for comparing the relative effectiveness
of two competing resource allocation strategies. For our purposes, we will therefore
interpret the transmission power for a node as being equality in (4.9).

4.5.2 Communication distortion model

Quantization noise

Computation and communication systems must represent measurements in terms
of a finite precision bitstream. Ideally, a real-valued measurement in the range
ms

k ∈ [−∆, ∆] is represented by an infinitely long bitstream {bj}, bj ∈ {0, 1},

ms
k = 2∆

(
∞∑

j=1

bj2
−j

)
− ∆.
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The kth sensor quantizes its transmitted measurement to the lth actuator (mt
k,l) by

truncating this series at βk,l bits

mt
k,l = 2∆




βk,l∑

j=1

bj2
−j


− ∆.

The resulting quantization error thus creates an additive noise term

mt
k,l = ms

k + nq
k,l.

Assuming ms
k is uniformly distributed over [−∆, ∆] and uniform quantization is em-

ployed, it is straightforward to calculate the first two moments of the quantization
noise

E
[
nq

k,l

]
= 0, E

[(
nq

k,l

)2]
=

∆2

3
2−2βk,l.

The uniform distribution of the measurements and the specific form of the quantizer
are not critical for the setup of the optimization problem established in Section 4.5.3.
If a given application has a more appropriate model, the variance of that quantiza-
tion noise can be used instead. Note also that although the same measurement is
being communicated from sensor k to every actuator, the quantization noise term is
different for each of those transmissions. In fact, some of those transmission links
may use zero bits (i.e., no transmission actually occurs) when the transmission would
be particularly costly relative to the benefit of transmitting the measurement.

Transmission noise

Ideally the quantized measurement would reach the destination exactly as it was
transmitted. However, communication with finite power on a wireless channel will
inevitably suffer errors. When sensor k transmits its quantized measurement mt

k,l to
actuator l, the received measurement is denoted mr

k,l. We can similarly represent the
inaccuracy caused by transmission errors as an additive noise term

mr
k,l = mt

k,l + nt
k,l.

To send its quantized measurement to actuator l, sensor k transmits the bit se-

quence {bj}βk,l

j=1 along a noisy channel. The received bit sequence {br
j}

βk,l

j=1, b
r
j ∈ {0, 1}

is a Bernoulli random variable with the conditional distribution based on the bit error
rate p

P
(
br
j = bj|bj

)
= 1 − p

P
(
br
j = (bj ⊕ 1) |bj

)
= p,
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where ⊕ denotes modulo-2 addition. The resulting received measurement is

mr
k,l = 2∆




βk,l∑

j=1

br
j2

−j + 2−(βk,l+1)


 + ∆.

We can then write the transmission noise term

nt
k,l = 2∆

βk,l∑

j=1

2−j
(
br
j − bj

)
.

A uniform distribution of ms
k over the dynamic range translates to an assump-

tion that bj is a Bernoulli random variable with probability 1/2. Consequently, the
expectation of the transmission noise is also zero, E

[
nt

k,l

]
= 0. The variance of the

transmission noise can be calculated as:

E
[(

nt
k,l

)2]
= 4∆2

βk,l∑

j=1

2−2jE
[(

br
j − bj

)2]
=

4p∆2

3

(
1 − 2−2βk,l

)
.

4.5.3 Optimal bit allocation

As mentioned earlier, the power scheduling problem is fundamentally a rate-
distortion tradeoff. In one form of the resource allocation problem, we desire to
meet a specified distortion criteria while expending the minimal amount of trans-
mission energy across the WSAN. The vehicle for making this tradeoff is to assign
the bit allocations on each sensor-actuator link {βk,l} to make optimal use of the
power resources. As in [157], we will also minimize the `2 norm of the total power
as a compromise measure between minimizing the total power (the `1 norm) and the
maximum power (the `∞ norm).

We consider for now a single actuator coefficient dl, which is approximated at the
actuator using the received measurements

d̂l =
∑

k∈K

wk,l m
r
k,l =

∑

k∈K

wk,l (mk + nk,l) ,

where nk,l = ns
k + nq

k,l + nt
k,l represents the total distortion from the ideal sensor

measurement. As stated earlier, the results from Section 4.4.1 indicate that reducing
the error in the actuator coefficients causes a proportional decrease in the upper
bound of the error on the actuation field. Therefore, we will consider only the fidelity
of a single actuation coefficient here, which can be used to bound the fidelity of the
total actuation field. If desired, the resource allocation problem outlined here can be
applied jointly to all of the actuator coefficients.

Making the typical assumption that the noise sources due to the sensor, quan-
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tization and bit errors are independent, we calculate the variance of the total noise
source as the sum of the component variances

E
[
(nk,l)

2] = σ2
k,l = σ2

k +
∆2

3
2−2βk,l +

4p∆2

3

(
1 − 2−2βk,l

)
.

Accounting for the multiplication of the weights necessary to calculate the actuation
coefficient, the MSE of d̂l is given by

E
[(

dl − d̂l

)2
]

=
∑

k∈K

w2
k,lσ

2
k,l.

This distortion model clearly has some limitations. It is likely that the noise terms
will not be completely independent, especially at very low bit rates. We will see in
a simulation described later that the independence assumption does not have a large
effect on the results for distortion ranges of interest. Also, the sensor noise is included
in the distortion calculation even when no bits are used on the communication link
and the measurement is not communicated at all. We will also see that this inaccuracy
in the model does not have a large effect as long as the sensor noise is small compared
to the dynamic range of the sensor so it is overwhelmed by the quantization error in
the low bit-rate regime.

For individual actuator coefficients, the optimal resource allocation problem is
expressed as an optimization of the bitrates {βk,l} over the field X = Z+ subject to
a distortion constraint of D0,

min
βk,l∈X

∑

k∈K

P 2
k,l

s.t. E
[(

dl − d̂l

)2
]
≤ D0.

Writing this optimization problem in terms of the energy and variance terms calcu-
lated from the communication and distortion models described above, the optimal
resources allocation problem is fully stated as

min
βk,l∈X

∑

k∈K

d2α
k,l

(
2βk,l − 1

)2

s.t.
∑

k∈K

w2
k,l

(
σ2

k +
∆2

3

(
4p + (1 − 4p) 2−2βk,l

))
≤ D0.

This optimization is an integer program, whose solutions are generally NP-hard. As
in [157], we relax the space of the optimization problem to be X = R+, where we
obtain a convex program with an explicit solution.

Relaxing the set of admissible solutions to the real numbers means that the so-
lution will no longer fit our original constraint set, but the real valued solutions are
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likely to be very close to the optimal integer solutions we desire [58,70]. By using the
typical procedure of converting the optimal real-valued answers into integer values by
rounding, we will see that even introducing this suboptimality still allows for signif-
icant relative gains over uniform bit allocation methods. Using a ceiling function to
convert the resulting values to integers ensures that the targeted distortion criteria
D0 is still met. However, using a less stringent rounding function may produce a
better rate-distortion tradeoff curve even though the individual distortion criteria are
not guaranteed to be met. In particular, using a rounding instead of a ceiling func-
tion generates many more links using zero bits, thereby possibly saving the overhead
energy needed to power up the communications circuits on the sensor.

We use Lagrangian methods to solve this optimization for βk,l ∈ R+. Making the
substitution zk,l = 2βk,l highlights the convex nature of the underlying optimization
problem.2 The resulting Lagrangian function is

Λ =
∑

k∈K

d2α
k,l (zk,l − 1)2 +

(
θ
∑

k∈K

w2
k,l

(
σ2

k +
∆2

3

(
4p + (1 − 4p) z−2

k,l

))
− D0

)
,

where θ is the Lagrange multiplier constant. Differentiating Λ with respect to zk,l

and setting it equal to zero we see that the optimal values of zk,l are those that meet
the constraints and are a solution of the quartic equation

z3
k,l (zk,l − 1) − θ

(
w2

k,l∆
2 (1 − 4p)

3d2α
k,l

)
= 0.

While analytic solutions to the quartic equation are cumbersome, numerical methods
can easily solve this equation for specific numeric values. There are four roots to this
quartic equation, only one of which is real and positive so as to be a viable solution
to our optimization problem. Moreover, we find that the real and positive solutions
for zk,l are strictly increasing in θ, which suggests an optimization strategy similar to
the well-known water-filling solution problem for multi-channel communications [27].
We can increase θ to increase the number of bits allocated to each channel until the
distortion criteria D0 is met with equality. We see that communication links with
measurements more critical to the actuation coefficient (measured by w2

k,l) will be
assigned bits more quickly, and communication links expending more transmission
energy (measured by d2α

k,l) will be penalized and assigned bits more slowly.

4.5.4 Numerical results

To demonstrate the utility of the power scheduling problem described in Sec-
tion 4.5.3, we examine a stylized WSAN setup for agricultural irrigation. Figure 4.6

2This type of substitution is standard in the field of geometric programming [54] to transform an
objective function containing products of exponentials into a convex program.
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Crop 1
(20%)

Crop 2
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Crop 3
(40%)

(a)
Sensor locations
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Figure 4.6: An example WSAN for a stylized agricultural irrigation application. (a) A
field 100m on each edge has three crops with varying desired soil moisture percentages. A
collection of moisture sensors (b) and irrigation actuators (c) are deployed, with a single
contour denoting where the receptive field or influence field has mostly vanished.

denotes the location of different crops with varying optimal soil moisture needs, as
well as the location of 68 moisture sensors and 38 irrigation actuators within a 100m
square field. The sensor receptive fields are modeled by a circular Gaussian function,
corresponding to the Green’s function for a homogeneous diffusion medium with infi-
nite boundaries [26]. The actuator influence fields are modeled by an elliptic Gaussian
function, representing a shaped water delivery pattern. Denoting the ideal moisture
levels depicted in Figure 4.5 as x0, the ideal sensor measurements are relative to the
nominal measurement, mk = 〈x0,φk〉 − 〈x,φk〉. One choice of actuation function to

achieve the set point is B = I, making the weights wk,l = 〈ψ̃l, φ̃k〉. We use simula-
tion parameters α = 3.5 and p = 10−3. To focus on the noise aspect related to bit
allocation, we also assume a common sensor noise variance of σ2

k = 10−4 for all k.
Focusing on a specific actuator coefficient dl, we first examine the theoretical im-

provement of the power scheduling algorithm described in Section 4.5.3 over a uniform
bit allocation scheme. Figure 4.7 shows the rate distortion curve produced for the

expected MSE E
[(

dl − d̂l

)2
]

when each link from a sensor to the lth actuator used
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Figure 4.7: The rate-distortion curve and bit allocation rates after optimal power schedul-
ing. (a) The average rate-distortion curve comparing MSE estimation error for a single
actuation coefficient dl and the total network power needed to achieve that distortion. (b)
The distribution of bits on the sensor-actuator communication links after optimal power
allocation. Each pane corresponds to a distortion equivalent to a uniform bit allocation
scheme. The bars indicate the fraction of links that communicate with a specific number of
bits.
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Figure 4.8: The rate-distortion curves calculated through simulated measurements. Mea-
surements were simulated directly through independent random generation. Correlated
measurements were also simulated by generating random environmental fields from a piece-
wise linear class and taking the resulting sensor measurements.

either the same number of bits or the same amount of power. For comparison, the
optimal power scheduling algorithm of Section 4.5.3 was run to find optimal bit allo-
cations and the resulting calculated rate-distortion curve is also shown in Figure 4.7.
We note that the bit allocation algorithm is able to reduce the network power con-
sumption by several orders of magnitude for the same distortion over both allocation
strategies allocating a uniform number of bits or a uniform power level to each link.
The rate-distortion curves shown are averages over all actuator coefficients in the
example setup. Figure 4.7 also indicates the distribution of bit assignments in the
optimal power allocation scheme. Each pane corresponds to a distortion equivalent
to a uniform bit allocation scheme, with the bars denoting the fraction of sensor-
actuator communication links using that number of bits. The distribution of bit
allocation levels across a range of values both above and below the corresponding
uniform allocation indicates that power savings are being achieved not only through
a reduction of bits but also through allocating those bits to the communication links
that are the best combination of important and reliable.

To verify our independent additive noise distortion model and the calculated rate-
distortion curves shown above, we simulated the calculation of actuation coefficients
from correlated measurements in the WSAN example application. Figure 4.8 shows
the rate distortion curves calculated when independent uniform measurements are
used to calculate actuation coefficients. The sensor noise, quantization and trans-
mission error simulation is the same as the previous simulation. We see that the
rate-distortion curves are essentially the same as those theoretically calculated and
shown in Figure 4.7. To explore the effect of sensor correlation on our distortion

50



estimate, we performed the same experiment when the measurements are correlated.
In this experiment we generated random environmental fields from a class of piece-
wise linear functions. The resulting correlated measurements were used to calculate
the actuator coefficients in the same manner and the rate-distortion results are also
shown. We see that these correlations do not play a significant role in the distortions
calculated from the theoretical model.

4.6 Summary and Future Work

4.6.1 Summary of contributions

WSANs are often discussed as a logical extension to sensor networks, but there is
little research investigating sensor and actuator systems working in concert together.
While algorithms that reduce communications and ensure data fidelity for sensor
measurements are important for many applications, they are not the ultimate arbiter
for obtaining good actuation performance. The total system must be designed and
managed with the final actuation goal in mind. However, the coordination among
overlapping sensor and actuator nodes without a centralized controller presents, how-
ever, a daunting challenge to this goal.

Our frame-theoretic WSAN model illustrates one strategy for taking such a holistic
information management view with actuation fidelity as the relevant metric. We
have demonstrated that using frames as an abstract model to include information
about the ways the sensors and actuators interact with the environment allows us to
implement linear control laws with no explicit centralized coordination. The necessary
coordination is achieved through the use of dual frame vectors, which allow each
sensor-actuator pair to account for the behavior of their neighboring nodes without
direct communication.

The analytic tools we present characterize the effect of eliminating an individual
communication link between a sensor and an actuator, both in terms of absolute
(for specific sensor measurements) and average actuation error. Choosing a network-
ing strategy for eliminating communication links is both difficult and non-intuitive.
While intuition would indicate that the relationship between the activation fields of a
sensor and an actuator are the relevant quantity characterizing the importance of the
communication between those two nodes, our work shows that it is the relationship
between the mathematical duals of the activation fields that captures this inherent im-
portance. It is through these dual functions that the relationship of the whole sensor
network to the whole actuator network can be accounted for in local communications
between pairs of nodes. Characterizing the importance of individual communication
links to the overall goal points directly to how a networking strategy could weigh the
costs and benefits of each communication link to achieve the desired balance between
performance and energy efficiency. The value of our analysis is highlighted in an ex-
ample WSAN system where link activations based on the sensor and actuator duals
performed an order of magnitude better than activations based on the simple overlap
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of the sensor and actuator receptive field functions.
We have also addressed the variable communication costs and fidelities of each

communicated measurement by solving the optimal power scheduling algorithm prob-
lem for our WSAN system. The solution of this convex optimization problem yields a
resource allocation strategy that greatly reduces the network’s power demands com-
pared to a uniform resource allocation. While this optimization involves centralized
information and processing, the nodes operate independently once they are given
their optimal bit allocations for each communications link. The optimization strat-
egy can therefore be done off-line and updated with a simple transmission to each
sensor whenever the nodes are recalibrated. In this way, the necessary coordination
is built into the pre-calculation and no centralized controller is needed to implement
the control strategy.

4.6.2 Future directions in distributed WSAN strategies

There are many open areas for future work in WSAN information management.
Our WSAN model assumes a simple network topology where every node can commu-
nicate to every actuator. This is clearly an unrealistic assumption when the spatial
extent of the WSAN is large and multiple hops would be needed to connect two
nodes. Future work will be needed to determine when a WSAN environment requires
nodes connected over an area wider than their transmission range, and to extend our
communication reduction strategies to these more complicated network topologies.

We envision several direct extensions to the WSAN strategies addressed in this
chapter. Recent research shows that altering the bit-interval durations to create
lower bit error rates for the most significant bits can result in reduced error of the re-
ceived measurement [85]. It is possible that even more significant power savings gains
could be produced by incorporating the bit-interval duration as a design parameter
in the optimal power scheduling problem. Similarly, WSAN information processing
strategies may also benefit from recent work and analysis in cooperative MIMO com-
munications [29, 110] and distributed estimation using analog communication [32].

The two different communication reduction strategies described in this chapter
(adaptive link pruning and optimal power scheduling) each have their own advantages.
One can imagine a hybrid strategy between these two approaches where the resource
allocation is a combination of off-line computations and adaptive decision making.
It is likely that such a system, though possibly difficult to analyze, could produce
significant gains over each strategy in isolation.

Finally, our WSAN analysis has assumed that a control law specifying the system
task is specified in the design stage and our goal is to simply implement this desired
behavior using distributed strategies. However, the design of good actuation laws is
non-trivial, especially in the presence of uncertainty in the physical models of the
environment. It is also possible that significant gains can be produced if the optimal
control laws are found that account for the communication costs needed to implement
them in WSANs.
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Chapter 5
Exploiting Redundancy for Sparse Approximation:

Sparse Coding via Locally Competitive Algorithms

Perhaps the most powerful benefit of redundant representations is their flexibility.
Section 2.1.3 mentions that a signal can be represented by an infinite number of
coefficient choices when the dictionary is overcomplete. This flexibility allows the
system to go beyond a simple linear transform of the data (e.g., a Fourier transform)
to a data encoding that may help the system understand the content of the signal.
When the task is scene understanding rather than just scene capture, this flexibility
allows the systems to represent data in a format that makes that task easier.

For example, the flexibility of an overcomplete dictionary often allows an image
to be well-approximated by a small subset of dictionary elements [12] even though
natural images are composed of several contrasting components (e.g., edges, textures,
and smooth regions). Consider an image patch containing an edge, illustrated heuris-
tically in Figure 5.1. Calculating a set of coefficients by simply projecting the image
onto the dictionary elements makes it difficult to determine the presence of the edge.
In contrast, an encoding that uses only a few non-zero coefficients (thereby choosing
only the best-matching dictionary elements) would make the signal structure more
explicit and easier to determine. This process of using the flexibility in an overcom-
plete dictionary to choose a small subset of coefficients to represent a signal is known
as sparse approximation. Though the flexibility of an overcomplete dictionary could
be used to find coefficients with many various properties, we focus on sparsity as a
compelling principle.

5.1 Sparse Signal Representations

Recent theoretical and experimental evidence indicates that many sensory neural
systems appear to employ sparse representations with their population codes [41,96,
113,114,150], encoding a stimulus in the activity of just a few neurons. While sparse
coding in neural populations is an intriguing hypothesis, neurally plausible mecha-
nisms capable of efficiently finding sparse approximations are currently unknown. The
challenge of collecting simultaneous data from large neural populations makes it dif-
ficult to evaluate this hypothesis without testing predictions from a specific proposed
mechanism.

Sparse approximation is a challenging problem that is the center of much current
research in mathematics and signal processing. Inferring sparse representations of a
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Figure 5.1: Projection and sparse coefficient characteristics for an image patch containing
an edge. (a) Coefficients calculated through projecting the edge in the image patch onto the
dictionary elements. Projection coefficients represent the image exactly, but make it difficult
to determine the presence of the edge. (b) A sparse set of coefficients representing the edge
in the image patch. In addition to representing the image exactly, sparse coefficients also
make the content more explicit. In this case, the edge in the image patch is much more
evident from the coefficients.
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signal is a key ingredient for solutions to many signal and image processing tasks,
including compression [44, 67, 104], denoising [19, 47], super-resolution (deconvolu-
tion) [61, 62, 145], in-painting [129], machine learning [71], and model-selection [128].
The main idea behind these methods is that when using the correct dictionary, signals
of interest can often be represented sparsely whereas the confounding signal elements
(i.e., the interference) is not sparsely representable. Many of the example applica-
tions cited above rely on the fact that the projections of a signal onto a dictionary are
can be inherently sparse. Using a non-linear approximation scheme to infer a highly
sparse representation of the signal will likely improve performance in these tasks.

In another novel direction known as “compressed sensing”, signals are captured
using a small number of linear measurements with a dictionary of random sensing
elements [13, 50]. Signal reconstruction is then preformed by inferring a sparse rep-
resentation that is consistent with the random measurements. This approach will
enable novel sensing strategies for many different applications.

Because of the utility of sparse representations, researchers have developed a va-
riety of sparse approximation algorithms. The two most popular types of algorithms
are convex relaxation and very efficient greedy algorithms that often work well in
practice [147]. Greedy algorithms are iterative schemes where each iteration selects
the single best dictionary element to represent the residual signal without regard to
which other elements will be selected in future iterations.

However, these existing algorithms have two significant drawbacks that make them
unlikely for neural implementation. First, they would be difficult to implement with
the parallel computational primitives used by neural systems. These algorithms are
fundamentally centralized operations that would be implausible for neural systems
and difficult to implement on a hardware platform. Second, existing algorithms do
not efficiently handle time-varying signals. By focusing on sparsity at each time
instant, these algorithms miss the larger picture of encoding a signal at a sequence of
time steps. Time-varying signals are obviously critical for biological system behavior
and increases in data collection abilities have made them increasingly important in
signal processing tasks.

We introduce and study a new class of neurally plausible sparse approximation
algorithms based on the principles of thresholding and local competition that addresses
many of the drawbacks observed in existing methods. In our Locally Competitive Al-
gorithms (LCAs) [136], neurons in a population continually compete with neighboring
neurons using (usually one-way) lateral inhibition to calculate coefficients representing
an input using an overcomplete dictionary. Unlike greedy algorithms that irrevocably
select the single best dictionary element at each iteration, parallel competition allows
many coefficients to become part of the representation simultaneously, perhaps even
working together to suppress a coefficient that had previously been selected. Our
continuous-time LCA is described by the dynamics of a system of nonlinear ordinary
differential equations (ODEs) that govern the internal state (membrane potential) and
external communication (short-term firing rate) of units in a neural population. We

55



show that each LCA corresponds to an optimal sparse approximation problem that
minimizes an energy function combining reconstruction mean-squared error (MSE)
and a sparsity-inducing cost function.

A sparse coding system built on a realistic neural architecture must possess three
critical properties.

• Stability: the system must be well-behaved under normal operating conditions;

• Sparsity: the system must perform its primary task well, finding a good tradeoff
between sparsity and representation error when coding a fixed image; and

• Regularity: the system must handle time-varying inputs efficiently, producing
coefficients that reflect the smooth character of natural input signals.

In addition to being built on a neurally realistic architecture, we illustrate that LCAs
also exhibit these three properties.

Specifically, LCAs can produce representations for static signals with approxi-
mately the same sparsity as other known techniques, including greedy algorithms
and convex relaxation. Additionally, the LCA coefficients representing time-varying
signals are much more regular than the coefficients produced by greedy algorithms.
In particular, LCA coefficients display inertia that regularizes the time variation of
the sparse coefficients for time-varying inputs by encouraging as many coefficients as
possible to retain their state when the input changes. This regularity makes the coef-
ficients much more predictable, making it easier for higher-level structures to identify
and understand the changing content in the time-varying stimulus.

This chapter develops a neural architecture for LCAs, shows their correspondence
to a broad class of sparse approximation problems, and details their advantages over
existing sparse coding algorithms (particularly greedy algorithms). The LCA methods
presented here point toward information representation methods possibly used by
sensory neural systems employing sparse coding and represent a first step toward a
testable neurobiological model for these systems.

5.2 Background and Related Work

5.2.1 Sparse approximation

Given an N -dimensional stimulus x ∈ R
N (e.g., an N -pixel image), we seek a

representation in terms of a dictionary D composed of K vectors {φk} that span the
space R

N . In optimal sparse approximation, we seek the coefficients having the fewest
number of non-zero entries by solving the minimization problem

min
a

‖a‖0 subject to x =
K∑

k=1

akφk. (5.1)
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Unfortunately, this combinatorial optimization problem is NP-hard [103].
In the signal processing community, two primary approaches are typically used

to efficiently find acceptable suboptimal solutions to the optimal sparse approxima-
tion problem. The first general approach substitutes alternate sparsity measures to
convexify the `0 norm. One well-known example is Basis Pursuit (BP) [19], which
replaces the `0 norm with the `1 norm

min
a

‖a‖1 subject to x =

K∑

k=1

akφk. (5.2)

BP is especially important for signal processing applications because (5.2) is a convex
optimization problem equivalent to a linear program, solvable using modern interior
point methods. If the signal is sparse compared to the nearest pair of dictionary
elements (e.g., a vector has a solution to the optimization problem in (5.1) that is
very sparse so that ‖a‖0 < mink 6=n

1
2
[1 + 1/〈φk,φn〉]) BP has the same solution as

the optimal sparse approximation problem [51].
The perfect reconstruction imposed by (5.2) may be too strict in many cases,

especially in the presence of noise. Instead, we may make a tradeoff between recon-
struction mean-squared error (MSE) and sparsity by forming an objective function
that is a weighted combination of MSE and the `1 coefficient norm. For example, Ba-
sis Pursuit De-Noising (BPDN) [19], corresponds to the unconstrained optimization
problem:

min
a



∥∥∥∥∥x−

K∑

k=1

akφk

∥∥∥∥∥

2

2

+ λ ‖a‖1


 , (5.3)

where λ is a tradeoff parameter. BPDN provides the `1-sparsest approximation for a
given reconstruction quality. There are many algorithms that can be used to solve the
BPDN optimization problem, with interior point-type [156] methods being the most
common choice. Though the term BPDN only specifies a general optimization prob-
lem (specified in (5.3)), our use of the term BPDN specifically implies that interior
point methods are used to find a numerical solution.

The second general approach employed by signal processing researchers uses iter-
ative greedy algorithms to constructively build up a signal representation [147]. The
canonical example of a greedy algorithm is known in the signal processing commu-
nity as Matching Pursuit (MP) [100]. The MP algorithm is initialized with a residual

r0 = x. At the kth iteration, MP finds the index of the single dictionary element best
approximating the current residual signal, ζk = arg maxk |〈rk−1,φk〉|. The coefficient
dk = 〈rk−1,φζk

〉 and index ζk are recorded as part of the reconstruction, and the
residual is updated, rk = rk−1 − φζk

dk. After J iterations, the signal approximation

using MP is given by x̂ =
∑J

k=1φζk
dk. Though they may not be optimal in general,

greedy algorithms often efficiently find good sparse signal representations in practice.
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5.2.2 Sparse coding in neural systems

Recent research has found compelling evidence that V1 population responses to
natural stimuli may be the result of a sparse approximation. For example, it has
been shown that V1 receptive fields [39, 82] are consistent with optimizing the co-
efficient sparsity when encoding natural images [113]. Additionally, simultaneous
V1 recordings show activity levels (corresponding to the coefficients {ak}) becom-
ing more sparse as neighboring units are also stimulated using natural scenes [150].
These populations are typically very overcomplete [114], allowing great flexibility in
the coefficients used to represent a stimulus. Using this flexibility to pursue sparse
codes might offer many advantages to sensory neural systems, including enhancing
the performance of subsequent processing stages, increasing the storage capacity in
associative memories, and increasing the energy efficiency of the system [114].

A neural system using sparse coding must employ an algorithm that is com-
putable using networks of parallel computational elements. While existing sparse
approximation algorithms are effective, their implementations do not correspond to
plausible neural architectures. For example, the BPDN objective function in (5.3)
can be minimized through direct gradient descent by the network implementation
mentioned in [113]. However, this implementation has several theoretical and practi-
cal shortcomings: it requires continuous inhibition between all units with overlapping
receptive fields; direct gradient descent can have difficulty minimizing objective func-
tions that decay steeply for very small coefficients; and it lacks a natural mechanism
to make small coefficients identically zero. Similarly, neural circuits implementing
MP [119, 120] would require tightly coupled timing of “winner-take-all” circuits [60]
(because mistakes cannot be corrected) and separate memory areas to hold the cur-
rent approximation and the current residual.

Beyond implementation considerations, existing sparse approximation algorithms
also do not consider the time-varying stimuli faced by neural systems. A time-varying
input signal x(t) would be represented with a set of time-varying coefficients {ak(t)}.1
Most sparse approximation schemes have a single goal: minimize the sparsity of the
representation for a fixed signal. However, higher level processing areas would also
desire coefficients sequences that change in a way matching the way the stimulus
changes over time. In particular, sparse coefficients should have smooth temporal
variations in response to smooth changes in the image. Simply recomputing a new
sparse approximation at each time step produces coefficients that contain significant
temporal variations due to idiosyncrasies of the particular sparse approximation al-
gorithm used rather than structure contained in the image, particularly when using
greedy algorithms.

1While we denote x(t) in continuous time, we will consider it to be a piecewise constant signal
over a sampling period. For example, we will often take x(t) to be a video sequence, consisting of a
series of still images held fixed for 1/30 s. The reason for this discrete approximation is twofold: we
simulate these continuous-time systems on a digital computer, and neural systems appear to have
finite temporal resolution (e.g., the persistence of vision phenomenon at the flicker fusion rate).
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In Section 5.3 we develop our LCAs, in which dictionary elements continually fight
for the right to represent the stimulus. These LCAs adapt their coefficients contin-
ually over time as the input changes without having to build a new representation
from scratch at each time step. This evolution induces inertia in the coefficients, reg-
ularizing the temporal variations for smoothly varying input signals. In contrast to
the problems seen with purely greedy approaches, our LCAs are plausible for neural
implementation and encourage both sparsity and smooth temporal variations in the
coefficients as the stimulus changes.

5.2.3 Other related work

There are several sparse approximation methods that do not fit into the two
primary approaches of pure greedy algorithms or convex relaxation. For example,
Sparse Bayesian Learning (SBL) [146,155] maximizes the posterior distribution on the
coefficients using an iterative expectation-maximization procedure [43]. SBL involves
computing a matrix inverse at each iteration, making it relatively time-consuming
and not amenable to neural circuit implementation. In still another direction, several
researchers have parallelized greedy algorithms by selecting a set of coefficients at each
iteration and correcting for the resulting correlations between coefficients [52,59,118].
These extensions do speed up convergence, but selected elements are committed to
the representation and cannot be changed as in our LCAs. In another direction, many
extensions of MP have been introduced [37, 126] that iteratively commit dictionary
elements to the representation but progressively change the coefficient values through
a computationally expensive orthogonalization step that also neurally implausible.

There are also several sparse approximation methods built on a parallel compu-
tational framework that are related to our LCAs [64, 77, 90, 127]. These approaches
will be discussed in more detail after describing the LCA system architecture (see
Section 5.3.5).

Finally, there have been attempts to adapt MP to handle video sequences on
several fronts. As one example, the work of Zakhor and collaborators [3,104] applied
MP to coding residual video sequences after applying a motion prediction stage to
remove as much variability from sequential frames as possible. The motion prediction
necessary to make this coding scheme effective is a very complex algorithm, and
it is difficult to imagine that such a procedure could be implemented easily on a
hardware platform. As another example, Rahmoune, et al. [125] applied MP to
video sequences using a dictionary of 3-D spatio-temporal basis functions adaptively
constructed from the video sequence itself. This method has several drawbacks for
neural implementation: temporary storage buffers would be required to remember the
stimulus over the temporal window being processed and a greedy step needs to be
applied at the end of each temporal window that potentially fosters large coefficient
changes at these window boundaries.
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5.3 Locally Competitive Algorithms for Sparse Coding

5.3.1 Architecture of locally competitive algorithms

Sensory neural systems (e.g., V1) represent a stimulus by the collective spiking
activity of the neural population. Our LCAs associate each neuron with an element
of the dictionary φk ∈ D. The system is presented with an input image x(t), momen-
tarily assumed to be a constant (time-varying video sequences will be considered in
Section 5.6). The collection of nodes evolve according to fixed dynamics (described
below) and settle on a collective output {ak(t)}, corresponding to the short-term
average firing rate of the neurons. The goal is to define the LCA system dynamics
so that few coefficients have non-zero values while approximately reconstructing the
input, x̂ (t) =

∑
k ak(t)φk ≈ x(t).

The LCA dynamics follow several properties observed in neural systems: inputs
cause the membrane potential to “charge up” like a leaky integrator; membrane poten-
tials over a threshold produce “action potentials” for extracellular signaling; and these
super-threshold responses inhibit neighboring units through lateral connections. We
represent each unit’s sub-threshold value by a time-varying internal state uk(t) that
evolves according to the dynamical system equation u̇k(t) = 1

τ
[mk(t) − uk(t)], where

τ is the membrane time-constant. The unit’s excitatory input current is proportional
to how well the image matches with the node’s receptive field, mk(t) = 〈φk,x(t)〉.
With a constant input, these internal state variables converge to the projections of
the image onto the dictionary elements. These values represent all of the information
in the image, but are not sparse. We must introduce lateral interactions between
the units to allow stronger nodes to inhibit weaker nodes, sparsifying the population
response.

When the internal state uk of a node becomes significantly large, the node becomes
“active” and produces an output signal ak used to represent the stimulus and inhibit
other nodes. This output coefficient is the result of an activation function applied
to the membrane potential, ak = Tλ(uk), parameterized by the system threshold
λ. Though similar activation functions have traditionally taken a sigmoidal form,
we consider activation functions that operate as thresholding devices — they are
essentially zero for values below λ and essentially linear for values above λ. Note
that for analytical simplicity we allow positive and negative coefficients, but rectified
systems could use two physical units to implement one LCA node.

The nodes best matching the stimulus will have internal state variables that charge
at the fastest rates. To achieve the competition allowing these nodes to win over the
weaker nodes, we have active nodes inhibit other nodes with an inhibition signal
proportional to both the activity level of the active node and the similarity of the
nodes’ receptive fields. Specifically, the inhibition signal from the active node k to
any other node n is proportional to the activity level ak and to the inner product
between the node receptive fields, measured by Gk,n = 〈φk,φn〉. The possibility of
unidirectional inhibition gives strong nodes a chance to prevent weaker nodes from
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Figure 5.2: Schematic and structural illustration of LCAs. (a) LCA nodes behave as a
leaky integrators, charging with a speed that depends on how well the input matches the
associated dictionary element and the inhibition received from other nodes. (b) A system
diagram shows the inhibition signals being sent between nodes. In this case, only node
2 is shown as being active (i.e., having a coefficient above threshold) and inhibiting its
neighbors. Since the neighbors are inactive then the inhibition is one-way.

becoming active and initiating counter-inhibition, thus making the search for a sparse
solution more efficient.

Putting all of the above components together, our LCA node dynamics are ex-
pressed by the non-linear ordinary differential equation (ODE)

u̇k(t) =
1

τ

[
mk(t) − uk(t) −

∑

n6=k

Gk,nan(t)

]
. (5.4)

This ODE is essentially the same form as the well-known continuous Hopfield net-
work [80]. Figure 5.2 shows a LCA node circuit schematic and a system dia-
gram illustrating the lateral inhibition. To express the system of coupled non-
linear ODEs that govern the whole dynamic system, we represent the internal state
variables in the vector u(t) = [u1(t) , . . . , uK(t)]t, the active coefficients in the vec-
tor a (t) = [a1(t) , . . . , aK(t)]t = Tλ(u(t)), the dictionary elements in the columns
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Figure 5.3: Relationship between the threshold function T(α,γ,λ)(·) and the sparsity cost
function C(·). Only the positive half of the symmetric threshold and cost functions are
plotted. (a) Sigmoidal threshold function and (b) cost function for γ = 5, α = 0 and
λ = 1. (c) The ideal hard thresholding function (γ = ∞, α = 0, λ = 1) and the (d) corre-
sponding cost function. The dashed line shows the limit, but coefficients produced by the
ideal thresholding function cannot take values in this range (e) The ideal soft thresholding
function (γ = ∞, α = 1, λ = 1) and the (f) corresponding cost function.

of the (N × K) matrix Φ = [φ1, . . . ,φK] and the driving inputs in the vector
m (t) = [m1(t) , . . . , mK(t)]t = Φtx(t). The function Tλ(·) performs element-by-
element thresholding on vector inputs. The stimulus approximation is x̂ (t) = Φa (t),
and the full dynamic system equation is

u̇ (t) = f(u(t)) =
1

τ

[
m (t) − u(t) −

(
ΦtΦ − I

)
a (t)

]
, (5.5)

a (t) = Tλ(u(t)) .

5.3.2 Sparse approximation by locally competitive algorithms

The LCA architecture described by (5.5) solves a family of sparse approximation
problems. Specifically, LCAs descend an energy function that combines the recon-
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struction MSE and a sparsity-inducing cost penalty C(·),

E(t) =
1

2
‖x(t) − x̂ (t)‖2 + λ

∑

k

C(ak(t)) .

Though we consider this energy function for its own sake, this optimization problem
can be interpreted in several ways. First, it can be viewed as the Langrangian of
a constrained optimization problem, seeking solutions that minimize MSE subject
to a sparsity constraint (or vice-versa, as in (5.1)). Second, minimizing this energy
function can be viewed as calculating the maximum a posteriori (MAP) estimate of
the coefficients in an inference task with a Gaussian noise model and a sparse prior
distribution on the coefficients (related to the cost function C(·)).

The specific form of the cost function C(·) is determined by the form of the thresh-
olding activation function Tλ(·).2 For a given threshold function, the cost function is
specified (up to a constant) by

λ
dC(ak)

dak
= uk − ak = uk − Tλ(uk). (5.6)

This correspondence between the thresholding function and the cost function can be
seen by computing the derivative of E with respect to the active coefficients, {ak} (see
Appendix C). If (5.6) holds, then letting the internal states {uk} evolve according
to u̇k ∝ − ∂E

∂ak
yields the equation for the internal state dynamics above in (5.4). As

long as ak and uk are related by a monotonically increasing function, the {ak} will
also descend the energy function E. This method for showing the correspondence
between a dynamic system and an energy function is essentially the same procedure
used by Hopfield [80] to establish network dynamics in associative memory systems.

We focus specifically on the cost functions associated with thresholding activa-
tion functions. Thresholding functions limit the lateral inhibition by allowing only
“strong” units to suppress other units and forcing most coefficients to be identically
zero. For our purposes, thresholding functions Tλ(·) have two distinct behaviors
over their range: they are essentially linear with unit slope above threshold λ, and
essentially zero below threshold. Among many reasonable choices for thresholding
functions, we use a smooth sigmoidal function

T(α,γ,λ)(uk) =
uk − αλ

1 + e−γ(uk−λ)
, (5.7)

where γ is a parameter controlling the speed of the threshold transition and α ∈ [0, 1]
indicates what fraction of an additive adjustment is made for values above threshold.
An example sigmoidal thresholding function is shown in Figure 5.3a. We are par-

2The correspondence between the threshold function and the cost function was originally observed
and calculated by Bruno Olshausen.
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Figure 5.4: Contrasting the coefficients calculated by BPDN solvers and SLCA. (a) The
top 200 coefficients from a BPDN solver sorted by magnitude. (b) The same coefficients,
sorted according to the magnitude ordering of the SLCA coefficients. While there is a gross
decreasing trend noticeable, the largest SLCA coefficients are not in the same locations as
the largest BPDN coefficients. While the solutions have equivalent energy functions, the
two sets of coefficients differ significantly.

ticularly interested in the limit of this thresholding function as γ → ∞, a piecewise
linear function we denote as the ideal thresholding function. In the signal processing
literature, T(0,∞,λ)(·) = limγ→∞ T(0,γ,λ)(·) is known as a “hard” thresholding function
and T(1,∞,λ)(·) = limγ→∞ T(1,γ,λ)(·) is known as a “soft” thresholding function [47].

Combining (5.6) and (5.7), we can integrate numerically to determine the cost
function corresponding to T(α,γ,λ)(·), shown in Figure 5.3b. For the ideal threshold
functions we derive a corresponding ideal cost function,

C(α,∞,λ)(ak) =
(1 − α)2λ

2
+ α |ak| . (5.8)

Details of this derivation are in Appendix D. Note that unless α = 1 the ideal
cost function has a gap because active coefficients cannot take all possible values,
|ak| /∈ [0, (1 − α)λ] (i.e., the ideal thresholding function is not invertible).

5.3.3 Special case: Soft-thresholding locally competitive algorithm
(SLCA)

As we see in Section 5.3.2, a LCA can optimize a variety of different sparsity
measures depending on the choice of thresholding function. One special case that we
will look at in detail is the soft thresholding function, corresponding to α = 1 and
shown graphically in Figures 5.3e and 5.3f. The soft-thresholding locally competitive
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algorithm (SLCA) applies the `1 norm as a cost function on the active coefficients,

C(1,∞,λ)(ak) = |ak|.

Thus, the SLCA minimizes a combination of the `2 reconstruction error and `1 spar-
sity penalty, meaning that it is simply another solution method for the general BPDN
problem described in Section 5.2.1. Despite minimizing the same convex energy func-
tion, SLCA and BPDN solvers will find different sets of coefficients, as illustrated
in Figure 5.4. The connection between soft-thresholding and BPDN is well-known
in the case of orthonormal dictionaries [19], and recent results [56] have given some
justification for using soft-thresholding in overcomplete dictionaries. The SLCA pro-
vides another formal connection between the soft-thresholding function and the `1

cost function.
Though BPDN uses the `1 norm as its sparsity penalty, we often expect many of

the resulting coefficients to be identically zero (especially when K � N). However,
like many numerical methods, interior point BPDN solvers will drive coefficients to-
ward zero but will never make them identically zero. While an ad hoc threshold could
be applied to the results of a BPDN solver, the SLCA has the advantage of incorpo-
rating a natural thresholding function that keeps coefficients identically zero during
the computation unless they become large enough to go active. In other words, while
BPDN solvers often start with many non-zero coefficients and try to force coefficients
down, the SLCA starts with all coefficients equal to zero and only lets a few grow up.
This advantage is especially important for neural systems that must expend energy
for non-zero values throughout the entire computation.

5.3.4 Special case: Hard-thresholding locally competitive algorithm
(HLCA)

Another important special case is the hard thresholding function, corresponding
to α = 0 and shown graphically in Figures 5.3c and 5.3d. Using the relationship
in (5.6), we see that this hard-thresholding locally competitive algorithm (HLCA)
applies an `0-like cost function by using a constant penalty regardless of magnitude,

C(0,∞,λ)(ak) =
λ

2
1(|ak|>λ).

As with the SLCA, the HLCA also has connections to known sparse approximation
principles. If node k is fully charged, the inhibition signal it sends to other nodes

would be exactly the same as the update step when the kth node is chosen in the MP
algorithm. However, due to the continuous competition between nodes before they
are fully charged, the HLCA will not find the same sparse representation as MP in
general.

As a demonstration of the power of competitive algorithms over greedy algo-
rithms, consider a canonical example used to illustrate the shortcomings of greedy

65



0 5 10 15 20

−1

−0.5

0

0.5

1

Extra dictionary element φ
N

(a)

0 5 10 15 20

−1

−0.5

0

0.5

1

Input vector x

(b)

0 5 10 15 20

−1

−0.5

0

0.5

1

MP coefficients

a i

i

(c)

0 5 10 15 20

−1

−0.5

0

0.5

1

HLCA coefficients

a i

i

(d)

0 0.005 0.01 0.015
0

0.2

0.4

0.6

0.8

time (s)

u(
t)

HLCA time dynamics

 

 
u

M
(t)

u
1
(t)

λ

(e)

Figure 5.5: A pathologic example where greedy MP algorithms perform poorly but HLCA
can find the optimal coefficients. (a) The dictionary in this example has one “extra” ele-
ment that consists of decaying combinations of all other dictionary elements. (b) The input
vector has a sparse representation in just a few dictionary elements. (c) MP initially chooses
the “extra” dictionary element, preventing it from finding the optimally sparse represen-
tation (coefficients shown after 100 iterations). (d) In contrast, the HLCA system finds
the optimally sparse coefficients. (e) The time-dynamics of the HLCA system illustrate its
advantage. The “extra” dictionary element is the first node to activate, followed shortly by
the nodes corresponding to the optimal coefficients. The collective inhibition of the optimal
nodes causes the “extra” node to die away.

algorithms [19,45]. For this example, specify a positive integer K̃ < N and construct
a dictionary D with K = N + 1 elements to have the following form:

φk =

{
ek if k ≤ N
∑ eK

n=1 κen +
∑N

n= eK+1

(
κ/(n − K̃)

)
en if k = N + 1,

where ek is the canonical basis element (i.e., it contains a single 1 in the kth lo-
cation) and κ is a constant to make the vectors have unit norm. In words, the
dictionary is essentially the canonical basis but with one “extra” element that is a
decaying combination of all other elements (illustrated in Figure 5.5, with N = 20

and K̃ = 5). The input signal is sparsely represented in the first K̃ dictionary ele-
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ments, x =
∑ eK

k=1
1√

eK
ek. The first MP iteration chooses φK, introducing a residual

with decaying terms. Even though x has an exact representation in K̃ elements, MP
iterates forever trying to atone for its bad initial choice. This pathological example
highlights the main danger in purely greedy algorithms such as MP: optimal local
choices cannot be corrected even if they induce undesirable behavior throughout the
rest of the coefficients. In contrast, the LCA competition allows the system to correct
bad choices and eliminate them if they are sufficiently globally undesirable. In this

example, the HLCA initially activates the Kth node. The collective inhibition from
nodes 1, . . . , K̃ causes this extra node to eventually die away leaving the optimal set
of coefficients.

5.3.5 Closely related methods

Fischer, et al. [64] developed an algorithm that has a similar flavor to our LCAs
but with significant differences. Their iterative procedure generates new coefficients
by selecting a subset of old coefficients and adding adjustments to retain perfect re-
construction. Coefficients are selected by thresholding a separate set of state variables
representing coefficient values over previous iterations. While this system does have
parallel characteristics, keeping a set of auxiliary state variables not directly related
to the current coefficients requires two separate neural populations. Additionally, this
algorithm would not map naturally to time-varying inputs because the state variables
would be reset with each new input.

Kingsbury and Reeves [90] have described a sparsity-inducing iterative scheme
for complex wavelets that is similar to a discrete approximation of the HLCA. Their
algorithm is described by a system of equations that has two primary differences from
the HLCA system equations. First, instead of the “charging up” behavior used by the
HLCA, their algorithm starts with projecting the stimulus onto the basis set and then
iteratively altering those coefficients. If this algorithm were initialized with all zero
coefficients, then the first iteration would jump directly to the projection coefficients
and continue from there. It is not immediately clear if this strategy enables the
algorithm to adapt smoothly to tracking stimulus changes. The second significant
difference is that their algorithm uses both the dictionary and the dual set (i.e., the
analysis and synthesis vectors in the frame representation [20]). Calculating the dual
vectors is computationally expensive and recalculation must be performed whenever
the dictionary changes. Such a system is less resilient to adaptations or failures. This
algorithm is also very similar to an iterative scheme described by Herrity et al. [77],
though the Herrity algorithm does not employ the dual dictionary.

Rehn and Sommer [127] have also recently described a neurally plausible sparse
coding mechanism that is similar to our approach. This algorithm is described by
a system of equations that have three primary differences from the HLCA system
equations. First, as with the work in [90], this algorithm also does not use a “charging
up” approach and but rather works by modifying the projection coefficients. Second,
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this system uses a variable threshold for activating each unit, making it easier for
neurons to become active when they have a larger driving input (i.e., neurons with
a larger input have a lower threshold to become active). Finally, this system uses a
constant amount of inhibition that is not related to the current activity level of the
active neuron.

Figueiredo, et al. [63] have introduced a projection pursuit algorithm for solving
the BPDN optimization problem. Their iterative (discrete) algorithm also shares some
common features with our SLCA because it uses alternating projections between the
signal and the coefficient domain. The main operation of their algorithm uses an
adaptive step size to use when following the gradient of the energy function plus a
recovery step to push their solution back into the constraint set of their particular
problem statement.

Each of these methods shares some similarities with the LCAs we have described.
However, the LCAs are unique in that they are the only method exhibiting the fol-
lowing combination of characteristics: they employ a charging process in conjunction
with a thresholding operation to naturally enforce `0-sparsity, they are parallel and
continuous time systems by design to facilitate (hardware or neural) analog imple-
mentation, they quantifiably minimize (at least locally) a specific objective function,
and they naturally address the problems of representing time-varying signals.

5.4 Property I: Stability

To be a neurally plausible sparse coding mechanism, LCAs must exhibit several
critical properties: stability, sparsity, and regularity for time-varying stimuli. We
focus our assessment of these properties on the HLCA both because it yields the
most interesting results and because it is notationally the cleanest to discuss. In
general, the analysis principles we use will apply to all LCAs through straightforward
(through perhaps laborious) extensions.

Any proposed neural system must remain well-behaved under normal conditions.
Linear systems theory has an intuitive and uniform notion of stability: well-behaved
systems produce outputs with bounded energy as long as the input also has bounded
energy [66]. Unfortunately, no such unifying concept of stability exists for non-linear
systems [88]. Instead, non-linear systems are characterized in a variety of ways,
including their input-output relationship and their behavior near an equilibrium point
u∗ where f(u∗) = 0.

While there is no universal input-output stability test for general non-linear sys-
tems, we observe that the LCA system equations are linear and only change when a
node crosses threshold (from above or below). A branch of control theory specif-
ically addresses these switched systems [40]. To express the HLCA system as a
switched system, we define K ⊆ [1, . . . , K] as the current set of active nodes (i.e.,
k ∈ K if |uk(t)| ≥ λ). We also define a (K × K) selection matrix SK as being all zeros
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except for ones on the diagonal corresponding to the active nodes,

[SK]k,n =

{
1 if k = n and k ∈ K
0 if k 6= n or k /∈ K.

Defining the system matrix AK = 1
τ

[(
I − ΦtΦ

)
SK − I

]
, the HLCA is written as a

switched linear system,3

u̇ (t) =
1

τ
Φtx(t) + AKu(t) .

In addition to drawing on some existing results in the switched linear systems lit-
erature, this viewpoint of the LCAs will be valuable in several of the succeeding
sections.

5.4.1 LCA stability criteria

The various stability notions we consider for the LCA will depend on a common
criteria. Define Ku(t) ⊆ [1, . . . , K] as the set of nodes that are above threshold in
the internal state vector u(t), Ku(t) = {k : |uk(t)| ≥ λ}. We say that the LCA
meets the stability criteria if for all time t the set of active vectors {φk}k∈Ku(t)

is
linearly independent. This criteria will be important for several later results. In the
meantime, it makes some intuitive sense that this condition is important to a LCA:
if a collection of linearly dependent nodes are active simultaneously, the nodes could
have active (and possibly growing) coefficients with a net effect of no contribution to
the reconstruction.

Satisfying the stability criteria comes down to two questions: how likely are small
subsets of dictionary elements to be linearly dependent, and how likely is the LCA
to activate such a subset? Small subsets of dictionary elements are unlikely to be
linearly dependent unless the dictionary is designed with this property. This result
has been quantified recently for random dictionaries in work related to the field of
“compressive sensing” [148] (c.f. [49] for an equivalent problem). Though these results
are for random dictionaries, they do give insight for large ambient signal dimensions
and provide analytic tools to explore a specific dictionary.

Regardless of the properties of the dictionary, sparse coding systems are actively
trying to select dictionary subsets so that they can use many fewer coefficients then
the dimension of the signal space,

∣∣Ku(t)

∣∣� N � K. While the LCA lateral inhibition
signals discourage linear dependent sets from activating, the stability criteria could
be violated when a collection of nodes becomes active too quickly, before inhibition
can take effect. In practice, this situation could occur when the threshold is too low
compared to the system time constant. We expect (and our simulations confirm) that

3All LCA systems using ideal thresholding functions can be written as a similar switched system,
but the thresholding functions with additive correction terms require a cumbersome definition of
proxy state variables that we omit here.
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under normal operating conditions with biologically relevant parameters, the LCAs
satisfy the stability criteria.

5.4.2 Equilibrium points

In a LCA presented with a static input, we look to the steady-state response (where
u̇ (t) = 0) to determine the coefficients. The character of the equilibrium points u∗

(f(u∗) = 0) and the system’s behavior in a neighborhood around an equilibrium point
provides one way to ensure that a system is well-behaved. With the exception of the
SLCA, all LCAs based on the ideal thresholding functions have non-convex energy
functions and therefore settle on solutions that are local minima. The number and
placement of these equilibrium points in this setting will be critical to understanding
whether the system will produce distinct solutions depending on the initial conditions
or whether the solutions are all grouped together.

Consider the ball around an equilibrium point Bε (u∗) = {u : ‖u− u∗‖ < ε}.
The tools of Lyapunov stability [88] are frequently employed to answer an intuitive
question: if the system is perturbed within this ball, does it then run away, stay where
it is, or get attracted back? Specifically, a system is said to be locally asymptotically
stable [4] at an equilibrium point u∗ if one can specify an ε > 0 such that

u(0) ∈ Bε (u∗) =⇒ lim
t→∞

u(t) = u∗.

Previous research [22, 97, 158] has used the tools of Lyapunov functions [88] to
study a Hopfield network [80] similar to the LCA architecture, but all of these anal-
yses make assumptions that do not encompass the ideal thresholding functions. For
example, [22, 97, 158] have all addressed the stability of a dynamic system similar to
both a Hopfield network [80] and the present CA architecture. Unfortunately, all
of these analyses make specific assumptions that do not apply to the CA systems.
In particular, the ideal thresholding functions cause complications because they are
not monotone increasing (i.e., they are not invertible) and they are not continuously
differentiable. There is a generalized notion of Lyapunov functions [4] that are ap-
plicable to non-differentiable threshold functions, but it will not be the most efficient
tool in this circumstance.

In Appendix E.1 we show that as long as the stability criteria is met, the HLCA:

• has a finite number of equilibrium points;

• has equilibrium points that are almost certainly isolated (no two equilibrium
points are arbitrarily close together); and

• is almost certainly locally asymptotically stable for every equilibrium point.

The conditions that hold “almost certainly” are true as long as none of the equilibria
have components identically equal to the threshold, (u∗

k 6= λ, ∀k), which holds with
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overwhelming probability. With a finite number of isolated equilibria, we can be confi-
dent that the HLCA steady-state response is a distinct set of coefficients representing
the stimulus. Asymptotic stability also implies a notion of robustness, guaranteeing
that the system will remain well-behaved even under perturbations (Theorems 2.8
and 2.9 in [4]).

5.4.3 Robustness to system imperfections

For a system to be considered well-behaved, it must also degrade gracefully in the
face of confounding situations, such as communication or implementation corruption.
These robustness notions are intimately related the concept of local stability. Asymp-
totic stability implies a notion of robustness to two different types of perturbations:
system perturbations and state perturbations.

We restate two robustness theorems from [4] without their original proofs. The
system robustness theorem guarantees that if the real system function is close to the
desired system function, then the equilibrium point will still be asymptotically stable.

System robustness theorem (Theorem 2.8 in [4]). Let u∗ be a locally asymp-
totically stable equilibrium point for the system

u̇ = f(u) ,

so that f(u∗) = 0. Then there exists ε > 0 and a positive definite continuous function
g̃(u) : Bε (u∗) → R such that the following holds: if g(u) is any function satisfying
the conditions:

• g(u) is continuous

• g(u∗) = 0

• ‖f(u) − g(u)‖ < g̃(u) ∀u ∈ Bε (u∗)

then u∗ is also a locally asymptotically stable equilibrium point for the system

u̇ = g(u) .

In a slightly different variation on system robustness, the state robustness theorem
guarantees that if the real state values are close to the desired state values, then the
equilibrium points will still be asymptotically stable.

State robustness theorem (Theorem 2.9 in [4]). Let u∗ be a locally asymptoti-
cally stable equilibrium point for the system

u̇ = f(u∗) ,

so that f(u) = 0. Then there exists ε > 0 and a positive definite continuous function
g̃(u) : Bε (u∗) → R such that the following holds: if g(u) is any function satisfying
the conditions:
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• g(u) is continuous

• g(u∗) = 0

• ‖g(u)‖ < g̃(u) ∀u ∈ Bε (u∗)

then u∗ is also a locally asymptotically stable equilibrium point for the system

u̇ = f(u+ g(u)) .

These robustness theorems guarantee that the LCAs are not so fragile that they
require infinite precision in their communications or their implementations to remain
stable. Much more work would have to be done to characterize the practical conse-
quences of these robustness results on system implementation.

5.4.4 Input-output stability

In physical systems it is important that the energy of both internal and external
signals remain bounded for bounded inputs. One intuitive approach to ensuring
output stability is to examine the energy function E. We show in Appendix E.2
that for non-decreasing threshold functions, the energy function is non-increasing
( d

dt
E(t) ≤ 0) for fixed inputs. While this is encouraging, it does not guarantee

input-output stability. To appreciate this effect, note that the HLCA cost function is
constant for nodes above threshold — nothing explicitly keeps a node from growing
without bound once it is active.

Appendix E.1 shows that if the set of active nodes K meet the stability criteria,
then the corresponding subsystem matrix AK will be input-output stable (i.e., AK will
only have eigenvalues in the left half-plane). Unfortunately, even if every subsystem
is individually stable the switched system can still be unstable [40]. Results from the
switched systems literature indicate that input-output stability can be guaranteed if
the individual linear subsystems are stable, and the system doesn’t switch “too fast”
between these subsystems [78].

Specifically, define τD to be the average dwell time between changes to the set
of active nodes Ku(t). For switched linear systems, sufficient (but not necessary)
conditions for input-output stability require each subsystem to be asymptotically
stable and that the system doesn’t switch “too often” [78]. We restate here a theorem
from switched system theory in language corresponding to the LCAs.

Average dwell time theorem (Theorem 2 combined with Lemma 1 of [78]).
Given a collection of system matrices Au(t) and a positive constant ω0 such that
Au(t) + ω0I is asymptotically stable for all t, then, for any ω ∈ [0, ω0], there is a
finite constant τ ∗

D such that as long as τD ≥ τ ∗
D, the switched system has a bounded

internal state for piecewise constant input signals x(t):

(∫ t

0

e2ωτ ‖u(τ)‖2 dτ

)1/2

≤ κ1

(∫ t

0

e2ωτ ‖x(τ)‖2 dτ

)1/2

+ κ2 ‖x(0)‖ ,
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Figure 5.6: The curve depicting the tradeoff between MSE and `1 -sparsity for a series of
standard test images shows that SLCA and BPDN are finding equivalent solutions in this
sparsity measure. Each line on the plot indicates the tradeoff between MSE and `1 coefficient
norm as λ is varied. The results for SLCA and BPDN overlap exactly, illustrating that the
systems are finding equivalent minima of the energy function.

where κ1 and κ2 are finite constants. Similar statements can be made using `∞ norms
instead of `2 norms.

The average dwell time theorem guarantees that the LCA system will have bounded
energy outputs for bounded energy inputs (and initial conditions) as long as each
subsystem is asymptotically stable and τD is not too small.

In Appendix E.2 we show that the HLCA linear subsystems are individually sta-
ble if and only if the stability criteria are met. Therefore, the HLCA is input-output
stable as long as nodes are limited in how fast they can change states. We expect
that the infinitely fast switching condition is avoided in practice either by the phys-
ical principles of the system implementation or through an explicit hysteresis in the
thresholding function.

5.5 Property II: Sparsity and Representation Error

Viewing the sparse approximation problem through the lens of rate-distortion
theory [7], the most powerful algorithm produces the lowest reconstruction MSE for
a given sparsity. When the sparsity measure is the `1 norm, there is little variation
in the solution quality: solving the convex optimization principle in (5.3) produces
a solution with minimum MSE for that `1 norm. Therefore, even though SLCA
produces different coefficients from an interior point BPDN solver, they will both
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Figure 5.7: The time response of the HLCA and SLCA (τ = 10 ms) for a single fixed
image patch. (a) The MSE decay and (b) the `0 sparsity for HLCA. (c) The MSE decay
and (d) the `0 sparsity for SLCA. The error converges within 1-2 time constants and the
sparsity often approximately converges within 3-4 time constants. In some cases sparsity is
reduced with a longer running time.

achieve optimality with regard to `1 sparsity (demonstrated in Figure 5.6). The
SLCA is unique in that it is the only LCA corresponding to a convex energy function.

Despite the analytic appeal of the `1 norm as a sparsity measure, many systems
concerned with energy minimization (including neural systems) likely have an interest
in minimizing the `0 norm of the coefficients. The HLCA is appealing because of its
`0-like sparsity penalty, but this objective function is not convex and the HLCA
may find a local minimum. We will show that while HLCA cannot guarantee the
`0 sparsest solution, it produces coefficients that demonstrate comparable sparsity to
MP for natural images.
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5.5.1 Reconstruction error of steady-state coefficients

Insight about the HLCA reconstruction fidelity comes from rewriting the LCA
system equation

u̇ (t) =
1

τ

[
Φt (x(t) − x̂ (t)) − u(t) + T(α,∞,λ)(u(t))

]
. (5.9)

For a constant input, HLCA equilibrium points (u̇ (t) = 0) occur when the residual
error is orthogonal to active nodes and balanced with the internal state variables of
inactive nodes.

〈φk,x(t) − x̂ (t)〉 =

{
uk(t) if |uk| ≤ λ

0 if |uk| > λ
.

Therefore, when HLCA converges the coefficients will perfectly reconstruct the com-
ponent of the input signal that projects onto the subspace spanned by the final set
of active nodes. Using standard results from frame theory [20], we can bound the
HLCA reconstruction MSE in terms of the set of inactive nodes

‖x(t) − x̂ (t)‖2 ≤ 1

ηmin

∑

k/∈Ku(t)

|〈φk,x(t) − x̂ (t)〉|2 ≤
(
K − |Ku(t)|

)
λ2

ηmin
,

where ηmin is the minimum eigenvalue of
(
ΦΦt

)
.

5.5.2 Efficiency of steady-state coefficients

Though the HLCA is not guaranteed to find the globally optimal `0 sparsest
solution, we would like to ensure that the system is still being reasonably efficient.
While the system nonlinearity makes it impossible to analytically determine the LCA
steady-state coefficients, it is possible to rule out some sets as not being possible.
For example, let K ⊆ [1, . . . , K] be an arbitrary set of active coefficients. Using
linear systems theory we can calculate the steady-state response ũK = limt→∞u(t)
assuming that K stays fixed. If |ũK

k | < λ for any k ∈ K or if |ũK
k | > λ for any k /∈ K,

then K cannot describe the set of active nodes in the steady-state response and we
call it inconsistent. We show in Appendix F that when the stability criteria are met,
the following statement is true for the HLCA: If x = φk, then any set of active
coefficients K with k ∈ K and |K| > 1 is inconsistent. In other words, the HLCA

may use the kth node or a collection of other nodes to represent x, but it cannot
use a combination of both. This result extends intuitively beyond one-sparse signals:
each component in an optimal decomposition is represented by either the optimal
node or another collection of nodes, but not both. While not necessarily finding the
optimal representation, the system does not needlessly employ both the optimal and
extraneous nodes.
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Figure 5.8: The tradeoff between MSE and `0 -sparsity for normalized (32 × 32) patches
from a standard set of test images. For a given MSE range, we plot the mean (a) and
standard deviation (b) of the `0 sparsity.
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5.5.3 Numerical simulations to verify sparsity

We have also verified numerically that the LCAs achieve a combination of error
and sparsity comparable with known methods. In these experiments we simulated
the LCAs until steady-state on normalized (32 × 32) test image patches. We used
a biologically plausible membrane time constant of τ = 10 ms [38] and a dictionary
consisting of the bandpass band of a steerable pyramid [141] with one level and four
orientation bands (i.e., the dictionary is approximately four times overcomplete).

The test image patches are created by filtering out the lowpass and residual bands
of the steerable pyramid, so that any given test image can be fully described using
the dictionary.4 Figure 5.7 shows the time evolution of the reconstruction MSE and
`0 sparsity for SLCA and HLCA responding to an individual image, and Figure 5.8
shows the mean steady-state tradeoff between `0 sparsity and MSE. For comparison,
we also plotted the results obtained from using MP, a standard BPDN solver followed
by thresholding to enforce `0 sparsity (denoted “BPDNthr”) and SLCA with the same
threshold applied (denoted “SLCAthr”). Most importantly, note that the HLCA
and MP are almost identical in their sparsity-MSE tradeoff. Though the connections
between the HLCA and MP were pointed out in Section 5.3.4, these are very different
systems and there is no reason to expect them to produce the same coefficients.
Additionally, note that the SLCA is producing coefficients that are nearly as `0-sparse
as what we can achieved by thresholding the results of a BPDN solver even though
the SLCA keeps most coefficients zero throughout the calculation.

5.6 Property III: Regularity for Time-varying Stimuli

Biological sensory systems are faced with constantly changing stimuli due to
both external movement and internal factors (e.g., organism movement, eye saccades,
etc.). Neurally plausible sparse coding systems must therefore efficiently handle time-
varying stimuli such as video sequences. Any sparse approximation scheme suitable
for hardware implementation must produce efficient coefficient sequences for video
inputs.

5.6.1 Strategies for encoding time-varying signals

One strategy for applying a typical sparse approximation scheme to a video se-
quence is to independently find a set of coefficients representing each frame using a
2-D (spatial) dictionary, thereby producing a sequence of coefficients (i.e., a coefficient
time series) for each dictionary element. However, optimizing a sparsity criteria at
each frame can cause the selected coefficients to vary significantly from one frame to

4We eliminate the lowpass band because it accounts for a large fraction of the total image energy
in just a few dictionary elements and it is unlikely that much gain could be achieved by sparsifying
these coefficients.
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the next even when there are relatively small changes in the input. Greedy algorithms
are especially prone to generating such “brittle” representations. This temporal ir-
regularity is undesirable for higher level systems trying to interpret the content of the
scene because characteristics of a smoothly varying stimulus would not be reflected
in the encoding.

In video compression, irregularity makes it more difficult to find efficient encodings
for the video sequence. Encoding a video sequence into a bit-stream involves explicitly
indicating both the location and values of non-zero coefficients. When the locations
of the non-zero coefficients are highly variable from frame to frame, the locations
of the active coefficients are unpredictable and more bits are needed to encode that
video. While neural coding is fundamentally different from video compression, this
same type of regularity is likely to be helpful for higher level systems understanding
the content of the stimulus. Regularity in the locations of active coefficients can let
the system focus on the changing values of a few locations rather than constantly
monitoring the appearance and disappearance of many locations.

Several methods are used in video compression schemes to try and avoid this
irregularity. For example, video compression algorithms often apply motion compen-
sation, where the content of one frame is predicted from the previous frame. In this
scheme, only the prediction residual is encoded at each frame, increasing the regular-
ity of the coefficients when the stimulus is undergoing predictable changes. Motion
prediction, in conjunction with coefficient selection algorithms (including MP), have
been successful in video compression. However, effective motion prediction algorithms
are very complex and it is difficult to imagine them being explicitly implemented in
analog hardware.

Other methods to work around coefficient irregularity typically include process-
ing several frames of video simultaneously. One such scheme employs 3-D dictionary
elements, having both temporal and spatial components. Another related idea is the
recent work by Rahmoune, et. al [125], which uses MP with a dynamically built dic-
tionary on motion compensated frames. The dictionary is built to try and employ
representation elements that are best matches for the time-varying signal. While ef-
fective as video coders, the complexity of these schemes along with the need to hold
several frames in memory simultaneously makes hardware implementation impracti-
cal.

5.6.2 Coefficient inertia

In contrast to the approaches described above, LCAs naturally produce smoothly
changing outputs in response to smoothly changing time-varying inputs. Assuming
that the system time constant τ is faster than the temporal changes in the stimulus,
the LCA will evolve to capture the stimulus change and converge to a new repre-
sentation. While local minima in an energy function are typically problematic, the
LCAs can use these local minima to find coefficients that are “close” to their previous
coefficients even if they are not optimally sparse. While permitting suboptimal co-
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efficient sparsity, this property allows the LCA to exhibit inertia0 that smooths the
coefficient sequences.

The inertia property exhibited in LCAs can be seen by focusing on a single node
in the system equation (5.9):

u̇k(t) =
1

τ

{
〈φk, (x(t) − x̂ (t))〉 − uk(t) when |uk(t) | < λ

〈φk, (x(t) − x̂ (t))〉 − αλ when |uk(t) | ≥ λ.

A new residual signal drives the coefficient higher but suffers an additive penalty.
Inactive coefficients suffer an increasing penalty as they get closer to threshold while
active coefficients only suffer a constant penalty αλ that can be very small (e.g., the
HLCA has αλ = 0). This property induces a “king of the hill” effect: when a new
residual appears, active nodes move virtually unimpeded to represent it while inactive
nodes are penalized until they reach threshold. This inertia encourages inactive nodes
to remain inactive unless the active nodes cannot adequately represent the new input.

5.6.3 Numerical simulations to verify regularity

To illustrate this inertia, we applied the LCAs to a sequence of 144 × 144 pixel,
bandpass filtered, normalized frames from the standard “foreman” test video sequence
with the same experimental setup described in Section 5.5. The LCA input is switched
to the next video frame every (simulated) 1/30 seconds. The results are shown in
Figure 5.9, along with comparisons to MP and BPDN applied independently on each
frame. The changing coefficient locations are nodes that either became active or
inactive at each frame. Mathematically, the number of changing coefficients at frame
n is:

∣∣Ku(n−1) ⊕Ku(n)

∣∣, where ⊕ is the “exclusive OR” operator and u(n) are the
internal state variables at the end of the simulation for frame n.

This simulation highlights that the HLCA uses approximately the same number of
active coefficients as MP but is much more efficient in how it chooses those coefficients.
The HLCA is significantly more likely to re-use active coefficient locations from the
previous frame without making significant sacrifices in the sparsity of the solution.
This difference is highlighted when looking at the ratio of the number of changing
coefficients to the number of active coefficients,

∣∣Ku(n−1) ⊕ Ku(n)

∣∣ /
∣∣Ku(n)

∣∣. MP has a
ratio of 1.7, meaning that MP is finding almost an entirely new set of active coefficient
locations for each frame. The HLCA has a ratio of 0.5, meaning that it is changing
approximately 25% of its coefficient locations at each frame. SLCA and BPDNthr
have approximately the same performance, with regularity falling between HLCA and
MP. Though the two systems can calculate different coefficients, the convexity of the
energy function appears to be limiting the coefficient choices enough so that SLCA
cannot smooth the coefficient time series substantially more than BPDNthr.
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Figure 5.9: The HLCA and SLCA systems simulated on 200 frames of the “foreman” test
video sequence. For comparison, MP coefficients and thresholded BPDN coefficients are
also shown. Average values for each system are notated in the legend. (a) Per-frame MSE
for each coding scheme, designed to be approximately equal. (b) The number of active
coefficients in each frame. (c) The number of changing coefficient locations for each frame,
including the number of inactive nodes becoming active and the number of active nodes
becoming inactive. (d) The ratio of changing coefficients to active coefficients. A ratio
near 2 (such as with MP) means that almost 100% of the coefficient locations are new at
each frame. A ratio near 0.5 (such as with HLCA) means that approximately 25% of the
coefficients are new at each frame.
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Figure 5.10: Marginal and transition probabilities characterizing the Markov chain be-
havior of the coefficient states. (a) The marginal probabilities denoting the fraction of the
time coefficients spent in the three states: negative, zero and positive (−, 0, and +). (b)
The transition probabilities denoting the probability of a node in one state transitioning to
another state on the next frame. For example, P (0|+) is the probability that a node with
an active positive coefficient will be inactive (i.e., zero) in the next frame.
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5.6.4 Quantifying temporal coefficient regularity

The simulation results indicate that the HLCA is producing time series coefficients
that are much more regular than MP. This regularity is visualized in Figure 5.11 by
looking at the time-series of example HLCA and MP coefficients. Note that though
the two coding schemes produce roughly the same number of non-zero entries, the
HLCA does much better than MP at clustering the values into consecutive runs of
positive or negative values. This type of smoothness better reflects the regularity in
the natural video sequence input.

We can quantify this increased regularity by examining the Markov state tran-
sitions. Specifically, each coefficient time-series is Markov chain [107] with three
possible states at frame n:

ςk(n) =





− if uk(n) < −λ

0 if −λ ≤ uk(n) ≤ λ

+ if uk(n) > λ.

Figure 5.10 shows the marginal probabilities P (·) of the states and the conditional
probabilities P (·|·) of moving to a state given the previous state. The HLCA and
MP are equally likely to have non-zero states, but the HLCA is over five times more
likely than MP to have a positive coefficient stay positive (P (+|+)). Also, though
the absolute probabilities are small, MP is roughly two orders of magnitude more
likely to have a coefficient swing from positive to negative (P (−|+)) and vice-versa
(P (−|+)).

To quantify the regularity of the active coefficient locations we calculate the en-
tropy [27] of the coefficient states at frame n conditioned on the coefficient states at
frame (n-1):

H(ςk(n) |ςk(n − 1)) = −P (+) [P (−|+) + P (0|+) + P (+|+)]

− P (0) [P (−|0) + P (0|0) + P (+|0)]

− P (−) [P (−|−) + P (0|−) + P (+|−)] , (5.10)

plotted in Figure 5.11. This conditional entropy indicates how much uncertainty there
is about the status of the current coefficients given the coefficients from the previous
frame. Note that the conditional entropy for MP is almost double the entropy for
the HLCA, while SLCA is again similar to BPDNthr. The principle contributing
factor to the conditional entropy appears to be the probability a non-zero node re-
mains in the same state (i.e., P (+|+) and P (−|−)). To illustrate, Figure 5.11 shows
the change in conditional entropy is almost linear with varying P (+|+) (assuming
P (−|−) = P (+|+) and all other transition probabilities are kept fixed).

The substantial decrease in the conditional entropy for the HLCA compared to
MP quantifies the increased regularity in time-series coefficients due to the inertial
properties of the LCAs. The HLCA in particular encourages coefficients to maintain
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Figure 5.11: The LCA coefficients display inertia that regularizes (smooths) their behavior
and makes them more predictable. (a) An example time-series coefficient for the HLCA
and MP (top and bottom, respectively) encodings for the test video sequence. HLCA
clusters non-zero entries together into longer runs while MP switches more often between
states. (b) The empirical conditional entropy of the coefficient states (−,0,+) during the
test video sequence. (c) The conditional entropy is calculated analytically while varying
P (+|+) and equalizing all other transition probabilities to the values seen in HLCA and
MP. The tendency of a system to group non-zero states together is the most important
factor in determining the entropy.
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their present state (i.e., active or inactive) if it is possible to find an adequate stimulus
representation. While some sparsity may be sacrificed in this strategy, the smoothness
induced in the coefficients by grouping active states together in time better reflects
the character of the natural time-varying stimuli and could be useful for higher-level
computations.

5.7 Summary and Future Work

5.7.1 Summary of contributions

Sparse approximation is an important paradigm in neural coding, though the plau-
sible mechanisms to achieve these codes have remained unknown. We have proposed
an architecture for a class of locally competitive algorithms that solve a series of
sparse approximation problems (including BPDN as a special case). These LCAs are
neurally plausible in the sense that they can be implemented using a parallel network
of simple elements that match well with the known neurobiology of sensory cortical
areas such as V1. Though these LCA systems are non-linear, we have shown that
they are well-behaved under nominal operating conditions.

While the LCA systems (other than SLCA) are not generally guaranteed to find
a globally optimal solution to their energy function, we have proven that the systems
will be efficient in a meaningful sense. In practice, we have seen that the LCAs
are very efficient in producing coefficients for natural images. The SLCA system
produces coefficients with sparsity levels comparable to BPDN solvers, but uses a
more efficient and natural physical implementation than these solvers. Perhaps most
interestingly, the HLCA produces coefficients with almost identical sparsity as MP.
This is significant because greedy methods such as MP are widely used in signal
processing practice because of their efficiency, but HLCA offers a much more natural
neural implementation.

LCAs are particularly appropriate for time-varying data such as video sequences.
The LCA ODE not only encourages sparsity but also introduces an inertia into the
coefficient time-series that we have quantified using both raw counts of changing
coefficient location and through the conditional entropy of the coefficient states. By
allowing suboptimal sparsity in exchange for more regularity in the set of active
coefficients, the LCAs produce smoother coefficient sequences that better reflect the
structure of the time-varying stimulus. This property could prove valuable for higher
levels of analysis that are trying to interpret the sensory scene from a set of sparse
coefficients.

5.7.2 Future directions in neurobiology

The current limitations of neurophysiological recording mean that exploring the
sparse coding hypothesis must rely on testing specific proposed mechanisms. Though
the LCAs we have proposed appear to map well to known neural architectures, they
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still lack the detail necessary to be experimentally testable. We will continue to
build on this work by mapping LCAs to a detailed neurobiological population coding
model that can produce verifiable predictions. While the model captured by the
LCA framework is undoubtedly incorrect in many ways, it provides a starting point
for refining our ideas about processing strategies used by cortical sensory areas.

5.7.3 Future directions in hardware implementation

By using simple computational primitives, LCAs also have the benefit of being
plausible for analog hardware implementation. On an implementation front, we envi-
sion several possible applications for LCAs in imaging systems. Implementing LCAs
in analog VLSI as the front end for a digital camera could produce systems that are
more time and energy efficient. Such a system could directly produce compressed co-
efficients using an analog hardware front-end before digitization. This system would
not waste resources digitizing data that will eventually be thrown away in a compres-
sion stage.

Similarly for video, an analog implementation of an LCA could serve as a front
end capturing each individual image frame. The resulting coefficient time-series would
already be compressed spatially, and the regularity of the coefficients puts them in
a form that is easily compressible temporally. Such a system could produce (using
analog hardware) compressed video comparable to results currently achievable only
with software on a digital computer.

There are several significant challenges to implementing LCAs in analog hard-
ware. The difficulty inherent in producing non-rectilinear receptive fields (e.g., CCD
“arrays” with non-square, overlapping regions), the lack of ideal thresholding devices,
and the quantity of inter-node wiring will certainly require deviations from the ideal
system equations we have described. As we move toward implementations, it is im-
portant that we characterize how the system performance is affected by compromises
in the ideal system operation. The robustness results implied by the local stability
described in Section 5.4.2 are a beginning step in that direction.

5.7.4 Future directions in signal processing algorithms

Beyond the specific implementation suggested by LCAs, the combination of spar-
sity and regularity induced in these competitive algorithms could illuminate criti-
cal representational principles that enable visual perceptual tasks, including pattern
recognition, source separation and object tracking. The ability to infer sparse repre-
sentations of data is already central to many signal and image analysis tasks, includ-
ing denoising, super-resolution, in-painting, compressed sensing, object recognition,
source separation and location, and classification. Additionally incorporating the
temporal structure of image sequences into the representation could yield additional
improvements to our performance on these tasks for video sequences.
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Chapter 6
Conclusions

To improve our design of signal processing systems and our understanding of
sensory neural systems, we must understand the consequences of the information
representations used by these systems. Neural systems appear to use representations
with two characteristics that are viewed apprehensively by the signal processing com-
munity: redundancy and distributed processing. Though it is not currently clear
what advantages neural systems acquire from this particular form of information rep-
resentation, it is important to understand the advantages these characteristics could
impart.

The contributions of this thesis illuminate the consequences of redundant repre-
sentations for distributed sensing systems from three different viewpoints.

• Chapter 3 explores the potential robustness of redundant representations to
corrupted coefficients. We extend known results for additive noise corruption of
frame coefficients to include noise reduction under point process noise sources.
We also use a new theory of fusion frames to characterize the fundamental noise
reduction limits of redundant representations under distributed processing con-
straints. These results show that distributed systems pay a maximum noise
reduction penalty depending on the specific way that representation elements
are grouped together into local processing structures. Additionally, we demon-
strate that distributed groupings forming a tight fusion frame (with tight local
frames) pay no penalty in noise reduction ability over the centralized recon-
struction strategies.

• Chapter 4 explores distributed strategies for turning sensed data into action
in the context of wireless sensor and actuator networks. We show that linear
control laws can be implemented exactly in redundant systems without a cen-
tralized controller. We also exhibit an adaptive strategy for pruning communi-
cation links to save node power. We further propose and solve an optimal power
scheduling problem that accounts for the variable quality and communication
cost of each sensor-actuator link to optimally allocate bitrates to each com-
munication channel. Our solution to this resource allocation problem displays
several orders of magnitude in network power savings over uniform allocation
strategies in illustrative example.

• Chapter 5 explores leveraging the flexibility of redundant representations to
achieve a sparse coding scheme based on distributed neurally plausible archi-
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tectures. In contrast to the known sparse approximation algorithms in the signal
processing literature, the locally competitive algorithms (LCAs) we developed
can be implemented in parallel analog systems (hardware or neural) while still
achieving the same MSE-sparsity tradeoff of centralized algorithms. Further-
more, the LCAs naturally process time-varying signals (e.g., video), producing
much smoother coefficient sequences than existing algorithms.

The collective results of this thesis present several insights about redundant repre-
sentations. As is known in the signal processing community, redundancy does provide
a measure of robustness to corruption in the representation. Additionally, redundancy
complicates the distributed processing of a data representation where no centralized
controller is used. However, redundancy provides a measure of flexibility that a
critically sampled system does not have. We have demonstrated that even under dis-
tributed processing constraints, this flexibility can be leveraged to produce coefficients
that not only represent the signal but also have other desirable characteristics. In
this thesis, we have concentrated on sparsity (explicitly) and smoothness in time (im-
plicitly) as target characteristics, but one can imagine that many different qualities
could be advantageous for a system trying to understand signal content.

The results we described also present several insights about distributed process-
ing requirements. We have illustrated that, as expected, distributed processing re-
quirements result in more complicated decision-making structures and in a loss of
noise-reduction ability. However, when enforcing distributed processing constraints
onto problems that already have functioning centralized algorithms (e.g., sparse ap-
proximation) we uncover solutions that open up new implementation avenues and
algorithms that display a fundamentally different character than their centralized
counterparts.

We believe that this combination of results points toward signal processing so-
lutions that can leverage distributed redundant representations to their advantage.
Rather than viewing these characteristics as a necessary evil that crop up in modern
problem settings, our results indicate that there are substantial benefits to these types
of representations. While we don’t understand all of the advantages these represen-
tations provide neural systems, we hope that further work will elucidate a greater
variety of paths that signal processing solutions can explore.

This thesis represents a starting point for exploring the advantages and overcoming
the challenges of distributed redundant representations. Each chapter has indicated
specific future work that will follow the results we have reported. In general, the
results of this thesis center around the very abstract model of sensing systems de-
scribed in Section 2.1.2. While useful for analysis, this model is still far short of an
accurate model of many specific sensing systems. Many of the future research direc-
tions we highlight involve making this model more applicable to specific man-made
and biological systems. We believe that there are significant gains that can be made
by better understanding the role of distributed redundant representations in a wide
variety of sensing systems.
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Appendix A
Bounding the Trace of a Quadratic Form

Consider the symmetric square matrices A and B. We would like to bound the
trace of the quadratic form Tr [ABA] in terms of the eigenstructure of A. The trace
operator is invariant under cyclic permutations, Tr [ABA] = Tr [AAB]. Assume
the symmetric square matrix A has (orthonormal) eigenvectors vi and corresponding
eigenvalues νi. We can use standard manipulations to calculate an upper bound,

Tr [ABA] = Tr [AAB] = Tr

[(
∑

i

νiviv
t
i

)(
∑

k

νkvkv
t
k

)
B

]

= Tr

[
∑

i,k

νiνkviv
t
ivkv

t
kB

]

= Tr

[
∑

i

ν2
i viv

t
iB

]

≤ ν2
maxTr

[
∑

i

viv
t
iB

]

= ν2
maxTr [B]

Similarly, we can calculate a lower bound based on the minimum eigenvalue
Tr [ABA] ≥ ν2

minTr [B] .
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Appendix B
Noise Reduction in a Tight Fusion Frame

Consider a collection of subspaces {Wi} that constitute a tight fusion frame with
bounds As = Bs. The subspace Wi is spanned by a local tight frame with analysis
operator Φi and identical frame bounds Ai = Amin = Bi = Bmax. The pseudoinverse
operator for the local frame is given by Φ†

i = 1
Amin

Φt
i.

We assume that the frame coefficients in each subspace are corrupted with inde-
pendent identically distributed noise having variance σ2. As a result, the noise vector
ni corrupting the reconstructed projection into Wi has a covariance matrix equal to
Γi = σ2

A2
min

Φt
iΦi. The covariance of the aggregate noise vector ñ =

∑
ini is

Γ̃ =
∑

i

Γi =
σ2

A2
min

∑

i

Φt
iΦi =

σ2A

A2
min

I =
σ2As

Amin
I,

where the last two equalities follow because the total collection of vectors is a tight
frame with bound A = AsAmin. When the fusion frame is tight, the composition of
the analysis and synthesis operators is a scaled identity operator, (W∗W)−1 = 1

As I.
Equation (3.5) then yields the total reconstruction MSE from the subspace projections

E
[∥∥x̂d − x

∥∥2
]

N
=

Tr
[
Γ̃
]

NAs2 =
σ2A

As2A2
min

=
σ2

A
.

When reconstructing directly from the global (tight) frame with frame bound
A, the result given in (3.3) directly gives the MSE for a centralized reconstruction

strategy
E[‖bxc−x‖2]

N
= σ2

A
. Note that this is equivalent to the MSE for the distributed

reconstruction case discussed above. When there are K vectors in the global frame,
A = N

K
and the reconstruction MSE can be written as

E
[∥∥x̂d − x

∥∥2
]

N
=

E
[
‖x̂c − x‖2]

N
=

σ2N

K
.
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Appendix C
Relating LCA Cost Functions and Threshold

Functions

To see the correspondence between a particular choice of a threshold function
Tλ(·) and the sparsity-inducing cost function C(·), we begin by assuming we want to
minimize an energy function of the form:

E =
1

2
‖x− x̂‖2 + λ

∑

k

C(ak)

=
1

2

(
xtx− 2mta+ atΦtΦa

)
+ λ

∑

k

C(ak) .

For simplicity, we suppress the time variable in the notation. To find the changes in
the active coefficients {ak} that will most significantly minimize the energy function,
we take the derivative of the energy function with respect to the active coefficients,

dE

dak

= −mk +
∑

n

Gk,nan + λ
dC(ak)

dak

= −mk +
∑

n6=k

Gk,nan + ak + λ
dC(ak)

dak

, (C.1)

where we assume the vectors are unit-norm ‖φk‖2 = 1. Looking back to the dynamic
system in (5.4),

u̇k =
1

τ

[
mk − uk −

∑

n6=k

Gk,nan

]
,

we can see that the dynamics on the internal state variables are proportional to the
derivative of the energy function in (C.1), u̇k ∝ − dE

dak
, if the active coefficients are

related to the internal state variables by

uk = ak + λ
dC(ak)

dak
.
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Appendix D
LCA Cost Functions Corresponding to Ideal

Thresholding Functions

The sigmoidal threshold function specified in (5.7) is invertible, meaning
that active coefficients can be related back to their underlying state variables,
uk = T−1

(α,γ,λ)(ak), though not in closed form. For notational simplicity and without

losing generality, we will assume in this section positive coefficients (ak > 0). Though
the ideal thresholding functions are not technically invertible, we can find the limit
of the inverse function:

T−1
(α,∞,λ)(ak) = lim

γ→∞
T−1

(α,γ,λ)(ak) =

{
λ if ak < (1 − α)λ

λ + ak − (1 − α)λ if ak ≥ (1 − α)λ.

Using the result from Appendix C,

λ
dC(ak)

dak
= uk − ak = T−1

(α,γ,λ)(ak) − ak,

we integrate to find the ideal cost function

C(ak) =
1

λ

∫ ak

0

(
T−1

(α,∞,λ)(x) − x
)

dx

=
1

λ

(∫ ak

0

(λ − x) dx +

∫ ak

(1−α)λ

(x − (1 − α)λ) dx

)

= αak +
λ (1 − α)2

2
.
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Appendix E
LCA Stability

E.1 Equilibrium Points

The current set of active coefficients, denoted by K, can take only finitely many
possible configurations. We further limit the possible values of K by only allowing
sets satisfying the stability criteria (active nodes must not form linearly dependent
subdictionaries). We also assume that a given fixed input x induces equilibrium
points u∗ that do not have any components identically equal to threshold u∗

k 6= λ.
This condition appears true with overwhelming probability, and implies that there
exists r > 0 such that |u∗

k| − r ≥ λ for all k ∈ K and |u∗
k| + r ≤ λ for all k /∈ K.

For a given K, linear systems theory indicates that the system

u̇ = AKu

has a single equilibrium point at the origin (i.e., is asymptotically stable) only if
AK has all negative eigenvalues (i.e., in the general case, all eigenvalues are in
the left half-plane) [66]. The matrix AK has no positive eigenvalues, so we must
show that it is full rank (AKu 6= 0, ∀u ∈ R

K). We begin by determining the
nullspace N (·) of the composite matrix ΦtΦSK. The nullspace of Φt is empty,
N
(
Φt
)

= ∅, because span{φk} = R
N . Because the collection {φk}k∈K is linearly in-

dependent and the matrix ΦSK consists of only those selected vectors on the columns,
N (ΦSK) = span{ek}k/∈K, where ek are the canonical basis elements. Therefore the
composite matrix also has a nullspace of N

(
ΦtΦSK

)
= span{ek}k/∈K. Without losing

generality, we assume that the first |K| entries are active, K = 1, . . . , |K|. Consider
first the case when all non-trivial internal state vectors only have non-zero values
in the first |K| positions, u ∈ span{e1, . . . , e|K|}. In this case, u /∈ N

(
ΦtΦSK

)
,

implying that AKu = −ΦtΦSu 6= 0. Consider next the case when all non-
trivial internal state vectors only have non-zero values in the last (K − |K|) po-
sitions, u ∈ span{e|K|+1, . . . , eK}. In this case, u ∈ N

(
ΦtΦSK

)
, meaning that

AKu = −u 6= 0. Taking these two cases together, we see that AKu 6= 0, ∀u ∈ R
K,

implying that AK only has negative eigenvalues so that the system in question has a
single equilibrium point.

Given a particular set of active nodes K, we therefore have a single equilibrium
point u∗ defined by the system matrix AK. All other points within a neighborhood of
this equilibrium point correspond to the same set of active nodes (and therefore the
same system matrix). Therefore, since each system matrix has a single equilibrium,
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no other equilibrium points exist with coordinates within a neighborhood of u∗,

|u∗
k − uk| < r for any k =⇒ f(u) 6= 0.

We know then the number of equilibrium points is finite, and each equilibrium point
is isolated because no other equilibrium points can be infinitely close.

Finally we consider the stability of the system in the neighborhood of the equilib-
rium point u∗. Because we know that the linear subsystem is asymptotically stable,
we must show that there exists a ε > 0 such that for any u(0) ∈ Bε (u∗), the set of
active nodes K never changes so AK stays fixed. We must therefore ensure that we
can specify a ε > 0 such that for a fixed AK the internal states never change state,
|uk(t) | > λ, ∀k ∈ K and |uk(t) | < λ, ∀k /∈ K. The tools of linear systems theory give
this evolution [66]:

u(t) = eAKtu(0) +

∫ t

0

e(t−τ)AKΦtxdτ

= eAKtu(0) + eAKt

(∫ t

0

e−AKτdτ

)
Φtx

= eAKtu(0) + eAKt
(
−A−1e−AKt + A−1

)
Φtx

= eAKtu(0) + −A−1Φtx+ eAKtA−1Φtx

= eAKt (u(0) − u∗) + u∗,

where limu(t) = −A−1Φtx = u∗ for a linear system. From this, we bound the energy
of the difference signal

‖u(t) − u∗‖ =
∥∥eAKt (u(0) − u∗)

∥∥ ≤ eµmaxt ‖u(0) − u∗‖ ≤ ‖u(0) − u∗‖ ≤ ε,

where µmax is the largest magnitude eigenvector of AK. This energy bound also serves
as a crude bound on the individual elements of the internal state vector

|uk(0) − u∗
k| ≤ ‖u(t) − u∗‖ ≤ ε.

We conclude that if ε < r, the system will not change state and behaves as a fixed,
asymptotically stable linear system. Therefore, the system is locally asymptotically
stable around each equilibrium point, u(0) ∈ Br (u∗).

E.2 Input-output Stability

Consider the time derivative of the energy computed through the chain rule (using
appropriate vector derivatives),

d

dt
E(t) =

dE

da

da

du
u̇ ∝ −dE

da

da

du

dE

da
,
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where the last equality follows from the definition of the LCA dynamics as propor-
tional (with a positive constant) to the negative gradient of E with respect to the
active coefficients, u̇ ∝ −dE

da
. Therefore, as long as Tλ(·) is non-decreasing, da

du
≥ 0,

implying that the energy function will be non-increasing with time d
dt

E(t) ≤ 0.
The average dwell time theorem stated in Section 5.4.4 guarantees that the LCA

system will remain stable as long as each subsystem is asymptotically stable and τD

is not too small. Appendix E.1 shows that the system matrix AK has only strictly
negative eigenvalues. The modified system matrix Ã = AK + ω0I has a minimum
magnitude eigenvalue of µ̃min = µmin + ω0. Clearly there exists a ω0 > 0 such that
µ̃min > 0 if and only if µmin > 0. In other words, there exists ω0 > 0 so that Ã is
asymptotically stable (thus satisfying the average dwell time theorem) if the stability
criteria are met for every subsystem of the switched system.
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Appendix F
Steady-state Sparsity of LCA Systems

The LCA at steady-state looks like a fixed linear system. If we know a priori the
set of active nodes corresponding to the steady-state response K then the steady-state
internal state variables are given by

ũ = lim
t→∞

u(t) = −1

τ
A−1

K Φtx,

where AK is defined as in Appendix E. While we cannot determine the set of active
nodes in the limit, we can distinguish sets of nodes that cannot be active. When
calculating the steady-state values ũ assuming a fixed K, if a node not in K is above
threshold in ũ (or a node in K is below threshold), the system matrix would have
changed. In this case we call K inconsistent. It is important to note a subtle point:
finding an inconsistency does not indicate the correct steady-state active set, but only
indicates that it cannot be K.

Given a set of candidate active nodes K, we assume (without losing generality) the
active nodes are indexed consecutively from the beginning, K = 1, . . . , |K|. We employ
the usual canonical basis elements ek ∈ R

K that contain a single non-zero entry in the
kth position (e.g., e1 = [1, 0, . . . , 0]t). We will also employ what we call the Grammian
basis elements vk ∈ R

K that contain the inner products of one dictionary element
with all the others, vk = [〈φ1,φk〉, 〈φ2,φk〉, . . . , 〈φK,φk〉]t = [G1,k,G2,k, . . . ,GK,k]

t.
The system matrix can be expressed entirely in terms of these basis elements,

AK =
1

τ

[(
I − ΦtΦ

)
SK − I

]
= −1

τ

[
v1, . . . , v|K|, e|K|+1, . . . , eK

]
,

where SK is the corresponding selection matrix (defined in Appendix E.1). The
inverse of this system matrix has several important properties. First, for inactive
nodes k /∈ K, the corresponding canonical basis vector is an eigenvector of the inverse
system matrix A−1ek = −τek. Similarly, for active nodes k ∈ K, the inverse system
matrix transforms the corresponding Grammian basis vector into the canonical basis

vector, A−1vk = −τek. We also note that the set
(
{vk}|K|

k=1

⋃{ek}K
k=|K|+1

)
is a basis

for the space R
K.

For now, let the input signal be proportional to a single dictionary element,
x = νφn, meaning that Φtx = νvn. We will assume that the scaling coefficient
is greater than the chosen threshold, ν > λ, so the signal strength is considered
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significant. There exists a unique set of coefficients {ξk} such that

νvn = ξ1v1 + · · ·+ ξ|K|v|K| + ξ|K|+1e|K|+1 + · · · + ξKeK.

Looking at each element of this expression in turn is illuminating:

ν [vn]1 = 〈φ1, νφn〉 = 〈φ1,
(
ξ1φ1 + · · ·+ ξ|K|φ|K|

)
〉

...

ν [vn]|K| = 〈φ|K|, νφn〉 = 〈φ|K|,
(
ξ1φ1 + · · ·+ ξ|K|φ|K|

)
〉

ν [vn]|K|+1 = 〈φ|K|+1, νφn〉 = 〈φ|K|+1,
(
ξ1φ1 + · · ·+ ξ|K|φ|K| + ξ|K|+1φ|K|+1

)
〉

...

ν [vn]K = 〈φK, νφn〉 = 〈φK,
(
ξ1φ1 + · · ·+ ξ|K|φ|K| + ξKφK

)
〉.

The coefficients ξ1, . . . , ξ|K| correspond to the best approximation of x in the subspace

spanned by {φk}|K|
k=1.

Consider first the case when n ∈ K. The coefficients are optimal: ξn = 1 and
ξk = 0 for all k 6= n. Assuming the fixed system matrix AK, the steady-state internal
state variables are given by

ũ = −1

τ
A−1

K Φtx = −1

τ
A−1

K νvn = νen.

If the LCA selects the optimal set of nodes, the coefficient values are optimal. Now
consider the case when the vector is not part of the active set, n /∈ K. The coefficients
{ξk} correspond to the steady-state values:

−1

τ
A−1

K Φtx = ξ1e1 + · · ·+ ξ|K|e|K| + ξ|K|+1e|K|+1 + · · · + ξKeK.

Looking at the entries of νvn, each index not in the active set, k /∈ K, has the
coefficient

ξk = ν〈φk,φn〉 −
(
ξ1〈φ1,φ|K|+1〉 + · · ·+ ξ|K|〈φ|K|,φ|K|+1〉

)
.

The set K is consistent only if ξk > λ for all k ∈ K, and ξk > λ for all k /∈ K.
These results lead us to several observations that help qualify the sparsity of the

LCA solutions:

1. When n ∈ K, ũk = 0 < λ for all k 6= n means that if the LCA finds the optimal
node, it will not include any extraneous nodes.

2. When n ∈ K, ũn = ν means that if the optimal node is correctly selected by the
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LCA in the steady state, the system will find the optimal coefficient for that
node.

3. When n /∈ K, ξk > λ for all k ∈ K and ξk < λ for all k /∈ K means that the
input signal can be represented by dictionary elements {φk}|K|

k=1 so the residual
projection onto any other vector is less than λ. Any set of active nodes that
cannot represent the input signal to this accuracy is inconsistent.

To minimize notation, we have only discussed one-sparse input signals. However,
the analysis performed here is entirely linear and the same principles apply to input
signals containing more than one dictionary component. In particular, a set of active
nodes is inconsistent if: it cannot represent every component of the input signal
so that the residual projection onto every other dictionary element is less than λ;
or it contains every component of the input signal in addition to other extraneous
components. Also, if the active set recovers the correct indices, the LCA steady-state
coefficients will find the optimal coefficients.
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