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ABSTRACT

This paper is an initial investigation into the following question:
Can cooperation among sensors in a sensor network improve de-
tection performance in a simple hypothesis test? We analyze a sim-
ple cooperative system using the Kullback-Leibler (KL) discrim-
ination distance and a quantity known as the information transfer
ratio which is a ratio of KL distances. We discover that, asymp-
totically, gain over a non-cooperative system depends on the con-
ditional KL distance. We conclude with an illustrative example
which demonstrates that cooperation not only significantly im-
proves performance but can also degrade it.

1. INTRODUCTION

The power constraints placed on any practical sensor network
make short distance transmissions between neighboring sensors
almost a necessity. That said, a fundamental question to ask is
whether or not cooperation among sensors can improve system
performance compared to a non-cooperative system. To study this
question, we apply the theory of information processing [1] in a
standard distributed detection setting. Similar investigations have
appeared in the distributed detection literature [2] and even under
the heading of ‘learning with finite memory’ [3], but the approach
taken here, to the best of our knowledge, is novel.

We adopt the simple system architecture shown in figure 1. It
combines the classic parallel and tandem distributed detection ar-
chitectures and serves as an initial model for the problem at hand.
All detectors share a common decision rule, and each detector
collects independent and identically distributed (iid) observations
Yn, 1 ≤ n ≤ N . Based upon these data and their neighbor’s deci-
sion, they each decide upon the active hypothesis. Specifically, the
detection process begins when the first detector makes a decision
based on its observation. This first decision is then transmitted to
the second detector. Based on the first detector’s decision and its
own observation, the second detector makes a decision which is
passed on to the third detector. The process repeats, and at each
stage, the detectors’ decisions are transmitted to a fusion center.
The fusion center, in turn, makes a final global decision. Because
our application here is sensor networks, the fusion center is not
considered to be a distantly located processing unit, but simply
one of the local sensors involved in the detection process (man-
ager node).

Central to the theory of information processing is the
Kullback-Leibler (KL) discrimination distance [4, 5] and a quan-
tity known as theinformation transfer ratio[1]. The information

transfer ratio, denoted byγ, is defined as the ratio of the KL dis-
tances between the distributions characterizing the input and out-
put of a system. In a very broad sense, the theory of information
processing endeavors to quantify how systems process informa-
tion. Here, we narrow our attention to the implications of Stein’s
Lemma [5] which states that the KL distance is the asymptotic ex-
ponential error rate of an optimal Neyman-Person detector.

We assume the fusion center performs a Neyman-Pearson like-
lihood ratio test. That is, we assume one of the fusion center’s error
probabilities is constrained and the other maximized. However,
instead of approaching this optimization directly using Lagrange
multipliers, we examine the KL distance between the joint distri-
butions under each hypothesis at theinput of the fusion center.
Because of Stein’s Lemma, we know the KL distance, computed
at the input of the fusion center, is directly linked to the fusion cen-
ter’s (and therefore the entire cooperative system’s) performance.
The greater the KL distance, the better the system will be able to
discriminate one hypothesis from the other asymptotically.

Let pi(Y) = p(Y1, Y2, . . . , YN |Hi) and pi(U) =
p(U1, U2, . . . , UN |Hi) denote, respectively, the joint probability
density function of the observations and the joint probability mass
function of the decisions under each hypothesisHi, i ∈ {0, 1},
Un ∈ {−1, 1}. We can express the information transfer ratio
across the cooperative portion of the system in one of two ways:

γ01 =
D (p0(U)‖p1(U))

D (p0(Y)‖p1(Y))
γ10 =

D (p1(U)‖p0(U))

D (p1(Y)‖p0(Y))

where, for two continuous density functionsp0(x), p1(x), the KL
distance betweenp0(x) relative top1(x) is defined as the expected
value of the likelihood ratio with respect top0,

D (p0‖p1) =

∫
p0(x) log

p0(x)

p1(x)
dx.

We distinguish between the two types of KL distances in the ex-
pressions above because, in general, KL distances are not sym-
metric (D (p1‖p0) 6= D (p0‖p1)). For the remainder of the paper,
however, we suppress the subscripts and focus onγ01 because it’s
the pertinent quantity when we fix the fusion center’s false alarm
probability and try to maximize its probability of detection. The
Data Processing Theorem [5], states thatD (p0(Y)‖p1(Y)) ≥
D (p0(U)‖p1(U)), causingγ to be a number between zero and
one. Thus, we interpretγ as being the fractional loss of discrimina-
tion distance across the cooperative portion of the system relative
to D (p0(Y)‖p1(Y)). Here, this effectively means thatγ repre-
sents the relative performance of the cooperative system in figure 1
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Figure 1: All the detectors, except the first, make their decisions based upon their observations and the preceding detector’s decision. The
decision of the fusion center is the final, global decision.

to the optimal centralized detector becauseD (p0(Y)‖p1(Y)) is
the KL distance a centralized detector would see at its input.

2. ANALYSIS AND RESULTS

Because we assume the inputs are iid under each hypothesis, the
KL distance between the joint distributions ofY is simply the sum
of the KL distances ofYn,

D (p0(Y)‖p1(Y)) =

N∑
n=1

D (p0(Yn)‖p1(Yn))

= N · D (p0(Y )‖p1(Y )) . (1)

The subscript onY is dropped in (1) becauseD (p0(Yn)‖p1(Yn))
is constant for alln. Because the decision statistics have a Marko-
vian structure [5], the distance between the joint distributions of
the binary decisions is

D (p0(U)‖p1(U)) = D (p0(U1)‖p1(U1))

+

N∑
n=2

D (p0(Un|Un−1)‖p1(Un|Un−1)) . (2)

Here, the conditional distributionspi(Un|Un−1), i ∈ {0, 1}, de-
pend on the decision rules. By definition, the ratio of (1) and (2),
is the information transfer ratio,

γ(N) =
D (p0(U1)‖p1(U1))

N · D (p0(Y )‖p1(Y ))

+

∑N
n=2 D (p0(Un|Un−1)‖p1(Un|Un−1))

N · D (p0(Y )‖p1(Y ))
. (3)

When there is no cooperation (communication) between the
detectors, the system in figure 1 degenerates into the standard par-
allel distributed detection architecture. The output marginal dis-
tributions pi(Un), i ∈ {0, 1} become iid and the KL distance
between the joint distributionspi(U) is N times the distance be-
tween one of the marginals. Therefore,

γ =
D (p0(U)‖p1(U))

D (p0(Y )‖p1(Y ))
. (4)

Note this expression is constant with respect toN . Thus, in terms
of γ, adding detectors to the non-cooperative system does not
change performance. This fact contrasts with (3) which explicitly

depends onN . Asymptotically, though, (3) does reach a limiting
value. In the appendix, we prove

lim
N→∞

γ(N) =
c2(1− p) + fc1

(1 + f − p) · D (p0(Y )‖p1(Y ))
(5)

where

p = P0

(
Un = −1|Un−1 = −1

)
q = P1

(
Un = −1|Un−1 = −1

)
f = P0

(
Un = −1|Un−1 = 1

)
g = P1

(
Un = −1|Un−1 = 1

)
c1 = p log

p

q
+ (1− p) log

1− p

1− q

c2 = f log
f

g
+ (1− f) log

1− f

1− g
.

(6)

This result allows us to identify diminishing points of return, i.e.
identify the point where adding detectors no longer results in sig-
nificant gain.

For finite N and a fixed decision rule, the cooperative sys-
tem will outperform the non-cooperative system if (3) greater
than (4). Asymptotically, this condition reduces toD∗ >
D (p0(U)‖p1(U)) where

D∗ = lim
N→∞

1
N

N∑
n=2

D (p0(Un|Un−1)‖p1(Un|Un−1)) .

As the example below demonstrates, this condition in general does
not hold. There are cases when cooperation reduces performance
(γ decreases). The key is to introduce cooperation (i.e. define
decision rules) such that this inequality holds. Unfortunately, but
perhaps not unexpectedly, the conditions under which it holds de-
pend on the probability distributions of the observations.

We now present an illustrative example which shows that even
simple interactions can produce significant gains. To simplify the
calculations, we choose a variant of what Tanget al. termed
the two-sided constant control strategy (CCS) [6] for the decision
rules,

Λ(Y1)

H1
>
<

H0
t

Λ(Yn)

H1
>
<

H0
taUn−1 , 2 ≤ n ≤ N



whereΛ(·) is the likelihood ratio,t is a baseline threshold, and
a ≥ 1 is a parameter. In words, the detectors operate and interact
in the following way. Thenth (n ≥ 2) detector collects an obser-
vationYn = yn and evaluates the likelihood ratio at that point. If
Un−1 = 1, Λ(yn) is compared to the baseline threshold scaled by
a; if Un−1 = −1, it is compared tot/a. In either case, ifΛ(yn)
is greater than its threshold thenUn = 1, otherwiseUn = −1.
Tanget al. proposed the two-sided CCS as a suboptimal decision
strategy for the tandem distributed detection architecture. They
showed, however, that this strategy performs nearly as well as the
optimal centralized detector in terms of probability of error.

Let the input observationsYn be Gaussian with meanm0 = 0
(underH0) andm1 = 1 (underH0) and varianceσ2 = 1. In
this case, the likelihood ratio is given byΛ(Yn) = exp (Yn − 1

2
).

Working with the sufficient statisticΥ(Yn) = Yn, the decision
rules become,

Y1

H1
>
<

H0
ln t + 1

2

Yn

H1
>
<

H0
ln taUn−1 + 1

2
, 2 ≤ n ≤ N.

The baseline thresholdt is set by specifying the probability of
false alarm for a single detector operating in isolation. Letting
Pf = .05, results int = 3.142. With these rules, the conditional
probabilities in (6) are,

p = F0

(
t/a

)
, q = F1

(
t/a

)
f = F0

(
ta

)
, g = F1

(
ta

)
whereFi(·) is cdf of the likelihood ratio under hypothesisi. The
input KL distanceD (p0(Y)‖p1(Y)) is N/2 [7].

The top panel of figure 2 plotsγ as a function ofa for various
values ofN . We interpret this plot in the following way.γ equal-
ing one represents, in some sense, the asymptotic performance of
the optimal centralized detector because, as mentioned above,γ is
defined relative toD (p0(Y)‖p1(Y)). When the system becomes
distributed (without cooperation), performance degrades, and the
fusion center sees a smaller input KL distance. The relative loss is
quantified by the horizontal line. In this example, we can in certain
cases, regain some of the loss by cooperating. Anytime the curves
rise above the horizontal line, signifies such a case. Because the
KL distance is related to the asymptotic exponential error rate of
the fusion center, these gains inγ are significant. On the other
hand, when the curves dip below the horizontal line, cooperation
actually degrades performance.

The bottom plot of figure 2 plotsγ whenσ = 2. In this case,
the gain, relative to the non-cooperative system, is even greater
than before, but the KL distance at the input of the fusion center is
smaller.

Interestingly, this example also suggests that there may be no
need to have large numbers of cooperating detectors. WhenN =
30, the γ curve is nearly coincident with the asymptotic curve.
Adding more detectors simply does not boost performance in any
significant manner.

3. CONCLUSION

These results suggest that cooperation may only beneficial (in
terms of detection) when the decision rules boost the conditional

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

γ

a

N=1
N=5
N=10
N=30
Asymptotic

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

γ

a

N=1
N=5
N=10
N=30
Asymptotic

Figure 2: The information transfer ratio is plotted as a function of
the linking parametera when the input observations are iid Gaus-
sian. The top panel shows the case whenσ = 1, the bottom panel
σ = 2.

KL distance at the input of the fusion center for a given pair of
input distributions. Perhaps counterintuitively, this statement does
not, necessarily, imply the system should be a learning system. In
the example above, it is difficult to argue that the individual de-
tectors become “smarter” as the decisions propagate through the
system. The decision rules are not adaptive, and upon receiving a
decision, a detector’s threshold adjusts such that it becomes harder
for it to make the same decision. We conjecture that the gain seen
in the example stems from the statistical dependencies between
p0(U) andp1(U) built in by the decision rules. Future work en-
tails investigating this conjecture and finding good, perhaps even
optimal, decision rules for a given class of input distributions.

A. APPENDIX

Taking the limit of (3), we have

lim
N→∞

γ(N) =

lim 1
N

∑N
n=2 D (p0(Un|Un−1)‖p1(Un|Un−1))

D (p0(Y )‖p1(Y ))
. (7)

From its definition, we can rewrite the conditional KL distance as

D (p0(Un|Un−1)‖p1(Un|Un−1)) =

c1hn−1 + c2(1− hn−1)

wherehn−1 = P0

(
Un−1 = −1

)
andc1, c2 are defined in (6).

Therefore,

lim
N→∞

1

N

N∑
n=2

D (p0(Un|Un−1)‖p1(Un|Un−1)) =

lim
N→∞

[
c1

1

N

N∑
n=2

hn−1 + c2
1

N

N∑
n=2

(1− hn−1)

]
. (8)



To evaluate the series, we first consider the sequence{hn}. Be-
causehn can be interpreted as a state probability of a two-state,
irreducible, and aperiodic Markov chain, we know that its limit
exists and is equal to its equilibrium probability [8]. Solving
the global balance equations, yields the equilibrium probabilities.
Here, we find thatlimn→∞ hn = f

1+f−p
. Now, using the theorem

of Cesaro’s mean ([5] p. 64), we conclude

lim
N→∞

1

N

N∑
n=n0

hn =
f

1 + f − p
.

Plugging this result back into (8) and (7) and simplifying gives

c2(1− p) + fc1

(1 + f − p) · D (p0(Y )‖p1(Y ))
. �

B. REFERENCES

[1] S. Sinanovíc and D.H. Johnson, “Asymptotic rates of the
information transfer ratio,” Proceedings of the Interna-
tional Conference on Acoutics, Speech, and Signal Processing
(ICASSP’02), vol. 2, pp. 1505–1508, 2002.

[2] R. Visvanathan and P. Varshney, “Distributed detection with
multiple sensors: Part I-Fundamentals,”Proc. of the IEEE,
vol. 85, no. 1, pp. 54–63, Jan 1997.

[3] M. Hellman and T. Cover, “Learning with finite memory,”The
Annals of Mathematical Statistics, vol. 41, no. 3, pp. 765–782,
Jun 1970.

[4] S. Kullback, Information Theory and Statistics, Wiley, New
York, 1959.

[5] T.M. Cover and J.A. Thomas,Elements of Information The-
ory, Wiley, 1991.

[6] Z.B. Tang, K.R. Pattipati, and D.L. Kleinman, “Optimization
of detection networks: Part I-Tandem structures,”IEEE Trans.
on Systems, Man, and Cybernetics, vol. 21, no. 5, pp. 1044–
1059, Sep 1991.

[7] D.H. Johnson and G. Orsak, “Relation of signal set choice to
the performance of optimal non-Gaussian detectors,”IEEE
Trans. on Communications, vol. 41, no. 9, pp. 1319–1328,
Sep. 1993.

[8] J.R. Norris, Markov Chains, Cambridge University Press,
1997.


