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Abstract—Beyond signal processing applications, frames
are also powerful tools for modeling the sensing and
information processing of many biological and man-made
systems that exhibit inherent redundancy. In many cases,
these systems are required to use distributed compu-
tational strategies to analyze and process the sensory
information. In this talk, I will review the use of frames to
model distributed sensing systems with a particular focus
on sensory neural systems. In light of the evidence that
many of these systems employ sparse codes, I will describe
our Locally Competitive Algorithms (LCAs) that use a
dynamical system to solve many sparse approximation
problems. These LCAs employ a parallel computational
architecture with simple analog components. I will show
numerical simulation results for these systems and de-
scribe their relationship to the many recently-proposed
iterative thresholding algorithms. Our LCA approach also
demonstrates potential advantages in coding time-varying
signals (e.g., video) by reflecting the smooth signal changes
in smooth coefficient variations. Finally, I will highlight
some future directions where we hope to impact areas
such as efficient analog signal processing devices, fast
discrete approximation algorithms, and video processing
and computer vision in complex temporal environments.

I. INTRODUCTION

Sensing systems are the window that allows both man-
made and biological systems to view the outside world.
The ability of a machine or a biological organism to
understand its local environment relies on the methods
used to collect and process this sensory information. Un-
derstanding more about optimal information processing
strategies in sensing systems is a critical goal both for
science and engineering.

Unfortunately, many sensing systems have two char-
acteristics that are not uniformly well understood an-
alytically: redundancy and distributed processing. In
particular, these characteristics appear to be ubiquitous

in biological sensory neural systems and their roles
are increasingly important in modern signal processing
systems. Understanding the performance of these sensing
systems will be aided by having good analytic models
that can incorporate both informational redundancy and
the distributed computation of (perhaps complex) pro-
cessing tasks.

Conventional signal processing wisdom associates re-
dundancy with robustness. This viewpoint states that re-
dundancy is useful to recover from corruption but should
be removed in all other cases for maximum efficiency.
This conflict appears in the classic information theory
result known as the “separation theorem” [1], which
divides the fundamental communication pathway into
two stages. The first stage (source coding) removes as
much redundancy as possible from a signal representa-
tion. The second stage (error control coding) introduces
redundancy back into the signal representation to counter
the inevitable communication errors.

While the communications paradigm describes effi-
cient information transmission, it does not address the
task of trying to efficiently understand the content of a
sensed signal (i.e., trying to infer the environmental con-
ditions responsible for the signal). When considering this
broader task, a second advantage of redundancy comes to
light: redundancy allows flexibility in the representation.
Critically sampled representations (e.g., an orthonormal
basis) contain enough information to reconstruct a signal
but they must use a single fixed strategy for the encoding.
In a redundant representation, the redundancy allows us
to choose from among many possible encodings to find
one that not only communicates the sensed signal but
also includes other desirable properties. In particular,
there are many reasons to desire the sparsest encoding,
using the fewest number of non-zero coefficients.

Many modern signal processing problems rely on



distributed processing, either because the data was orig-
inally gathered in that form (e.g., from a physically
dispersed collection of sensors) or because the available
processing resources are inadequate for centralized com-
putation on a full dataset. Again, conventional wisdom
says to remove the distributed processing constraints as
quickly as possible in favor of centralized computations.
The most favorable situation distills the data down to
a single sufficient statistic that can be evaluated in one
central location.

This desire for data centralization is understandable.
Managing the redundancy in a representation requires
coordination that is most easily achieved with centralized
oversight. In contrast, neural systems appear to take
an opposite strategy. Rather than centralize information
down to a single decision-making cell, neural systems
appear to use the joint activity in successively larger
neural populations to analyze a sensory stimulus. The
example of neural computation indicates that there exist
efficient strategies for managing redundant representa-
tions even without centralized control.

This paper will address the use of frames as a plat-
form to model the sensing and distributed processing
performed in a variety of sensing systems. In particular,
we will review this modeling approach in both a man-
made and a biological system. Section III will use the
example of a wireless sensor network as a man-made
system with distributed processing constraints to reduce
communication costs. Section IV will use the example
of sparse coding in primary visual cortex as a biological
system with an architectural constraint that requires
distributed processing. In the context of this model, we
will review our recent development of a novel class of
neurally plausible locally competitive algorithms (LCAs)
that solve a collection of sparse coding principles.

II. BACKGROUND

A. Frames

In general, measurements made by nearby sensors are
highly correlated because the sensor receptive fields are
not orthogonal and may be linearly dependent. When
a representation system has vectors that are linearly
dependent, the collection of vectors technically no longer
forms a basis. A collection of K vectors {φk} is said
to form a frame [2]–[4] for the space H if there exist
constants 0 < A ≤ B <∞ such that Parseval’s relation
is bounded for any x ∈ H,

A ‖x‖2 ≤
∑
k∈K
|〈φk,x〉|2 ≤ B ‖x‖2 .

Because of the dependency present between frame vec-
tors, a set of dual vectors are used for the reconstruction,

x =
∑
k∈K
〈x,φk〉φ̃k.

While there are an infinite number of sets of dual vectors
that will work for reconstruction, the canonical dual
set is calculated to reduce the error due to corrupted
coefficients as much as possible. One would expect that
noise reduction would be a significant advantage of using
a redundant frame.

B. Fusion frames

To begin analyzing the reconstruction from redundant
elements in a distributed way, we turn to a new theory
of fusion frames described in [5]. Here, signals are
decomposed in terms of overlapping subspaces. A family
of closed subspaces {Wi}Li=1 is a fusion frame for H if
for every signal x ∈ H,

As ‖x‖2 ≤
∑

i
‖πi(x)‖2 ≤ Bs ‖x‖2 , (1)

where 0 < As ≤ Bs < ∞ are the frame bounds and
πi(·) is the orthogonal projection onto Wi. A fusion
frame is in many ways analogous to a frame. In frame
theory, an input signal is represented by a collection of
scalar coefficients that measure the projection of that
signal onto each frame vector. In a fusion frame, an
input signal is represented by a collection of vector
coefficients that represent the projection (not just the
projection energy) onto the each subspace. Formally,
for a fusion frame, the representation space is defined
as V =

{
{xi}|xi ∈Wi and xi ∈ l2

}
, the space of

all collections of finite-energy vectors containing one
representative from each subspace.

Analogous to frame theory, a fusion frame has an anal-
ysis operator, W : H → V , Wx = {πi(x)} = {xi}.
The adjoint of the analysis operator is the synthesis
operator, W∗ : V → H , W∗{xi} =

∑
i xi.

The composition of the analysis and syn-
thesis operators form the frame operator,
(W∗W) : H → H , (W∗W)x = W∗Wx =

∑
i πi(x).

The frame operator is bounded and invertible,
with bounds As ≤ ‖(W∗W)x‖ ≤ Bs and
1
Bs ≤

∥∥∥(W∗W)−1 x
∥∥∥ ≤ 1

As for all ‖x‖ =1. As
with a standard frame, the unique pseudoinverse for W
is given by W† = (W∗W)−1 W∗.

One of the fundamental results of [5] shows that fusion
frames also provide a link between the properties of a
global frame and local collections of frame elements. If
each subspace Wi has an associated family of vectors



that locally form a frame for Wi with bounds (Ai, Bi),
then the total collection of vectors globally form a frame
for H with bounds (A,B).

Because of this link, we can use fusion frames to
model the effects of distributed signal reconstruction in a
sensing system. In this model, the frame vectors local to
one subspace are used to reconstruct the orthogonal pro-
jection of the signal into that subspace while maximizing
the noise reduction properties of the local frame. The
collection of reconstructed signals within each subspace
are then used to reconstruct the original input signal
while maximizing the noise reduction properties of the
frame of subspaces. This subspace-based reconstruction
distributes the processing by only requiring knowledge
of the frame vectors within a subspace to do a local
reconstruction. Such a scheme adds a level of robustness
to the system because only vectors in one local subspace
are affected if a frame vector is added or removed.

C. Sparse approximation

Given an N -dimensional stimulus x ∈ RN (e.g., an
N -pixel image), we seek a representation in terms of a
dictionary D composed of K unit-length vectors {φk}
that span the space RN . When the dictionary is overcom-
plete (K > N ), there are an infinite number of ways to
choose coefficients {ak} such that x =

∑K
k=1 akφk. In

sparse approximation, we seek the coefficients having
the fewest number of non-zero entries by solving the
minimization problem

min
a

∑
k

C(ak) subject to

∥∥∥∥∥x−
K∑
k=1

akφk

∥∥∥∥∥
2

< ε,

(2)
where C(·) is a sparsity-inducing cost function.

In the signal processing community, two approaches
are typically used to find acceptable solutions to this
problem. The first general approach, known as Basis
Pursuit De-Noising (BPDN) [6], uses the convex `1

norm as a cost function. There are many algorithms that
can be used to solve the BPDN optimization problem,
with interior point-type methods being the most common
choice. The second general approach employed by signal
processing researchers uses iterative greedy algorithms
to constructively build up a signal representation [7] in
the hopes of approximating a solution with the `0 norm
as a cost function. The canonical example of a greedy
algorithm is known in the signal processing community
as Matching Pursuit (MP) [8]. MP simply selects the
dictionary element with the largest (magnitude) inner

product with the current residual, remembers the co-
efficient it selected, and updates the residual. Though
they may not be optimal in general, greedy algorithms
often efficiently find good sparse signal representations
in practice.

III. MAN-MADE SENSING: WIRELESS SENSOR

NETWORKS

Wireless sensor networks are a canonical example of
a man-made sensing system that is constrained to use
distributed processing strategies. In this setting, sensor
measurements, represented by inner products of sensor
receptive fields with an environmental signal 〈φk,x〉,
must be processed without sending all of the data to a
central fusion center. While the redundancy in the sensor
network will still provide robustness to measurement
noise, some of these noise reduction properties will cer-
tainly be sacrificed because of the distributed processing
constraint. This distributed processing restriction can be
modeled using the concept of a fusion frame [9].

Using the tools of fusion frame, we can consider
the noise reduction capability of a redundant expansion
under distributed processing requirements. Let {Wi}Li=1

be a frame of subspaces for the space H, with frame
bounds (As, Bs). Let each subspace be spanned by a
collection of Ki vectors that locally form a frame for
Wi with frame bounds (Ai, Bi). When taken together,
these vectors form a frame for H with bounds (A,B).
A signal x is represented by all of the vectors in the
global frame, and coefficients are corrupted by additive
noise with subspace-dependent variance σ2

i .
For distributed reconstruction, local frame vectors are

first used to reconstruct the projection of the signal onto
each subspace, x̂i. In [10] we derive a bound on the
total MSE when reconstructing each xi = πi(x), σ

2
iN
Bi
≤

E
[
‖x̂i − xi‖2

]
≤ σ2

iN
Ai

. Distributed reconstruction x̂d is
completed by using each x̂i as a corrupted coefficient
in the fusion frame. The previous bound tells us that we
can view the subspace projections xi as being corrupted
independently by an additive noise vector ni ∈Wi, with
covariance matrix Γi that has bounded total variance
σ2

iN
Bi
≤ Tr [Γi] ≤ σ2

iN
Ai

. If we define Γ̃ =
∑

i Γi, we
can also bound the MSE per signal dimension [10],

Lσ2
min

BmaxBs2
≤ 1
Bs2

∑
i

σ2
i

Bi
≤
E
[∥∥x̂d − x∥∥2

]
N

· · · ≤ 1
As2

∑
i

σ2
i

Ai
≤ Lσ2

max

AminAs
2 .

(3)



Frame reconstruction with our distributed processing
constraint has the power to reduce noise in the re-
constructed signal by an amount that depends on the
minimum redundancy of both the frame of subspaces,
and the individual local frames that span the subspaces.
It is interesting to consider how much of a penalty in
noise reduction a distributed processing scheme incurs
compared to centralized processing. Using the properties
of fusion frames, considering the collection of local
frames together yields a global frame for H with lower
and upper bounds A ≥ AsAmin and B ≤ BsBmax.
From there we can determine [10] that a centralized
reconstruction of x using the global frame directly, x̂c,
would yield an upper bound on the MSE per signal

dimension of
E[‖bxc−x‖2]

N ≤ σ2
max
A ≤ σ2

max
AsAmin

. Comparing
this bound to the MSE upper bound in (3) when using
the distributed scheme, we see that (because L ≥ As)
the upper bound using the centralized approach is better
than the distributed reconstruction by a factor of L

As .
While these are not tight bounds on the error, they
hint at the potential for the distributed reconstruction to
perform worse than the centralized scheme and give a
bound on the performance reduction. Finally, we have
also shown that there will be no noise-reduction penalty
for distributed reconstruction when all of the local frames
are tight frames with the same number of vectors and the
same frame bounds, and the fusion frame is also tight.
Though the conditions proposed here for equal noise
reduction may seem restrictive, a result from [11] re-
garding random frames indicates that frames will become
tight asymptotically as more random vectors are added.
Therefore, systems where random vectors are randomly
assigned to a local subspace will asymptotically meet the
conditions for achieving the optimal (centralized) noise
reduction.

As a further note, we have also used frame theory
to model the distributed interactions necessary to realize
action directly from sensed data in a distributed system.
In the setting of wireless sensor and actuator networks,
the analytic tools of frame theory have pointed the way
to efficient [12] (and sometimes optimal [13]) methods
for reducing the communication between sensors and
actuators in such a system.

IV. BIOLOGICAL SENSING: SENSORY NEURAL

SYSTEMS

Despite not knowing the inner workings of sensory
neural systems, redundancy clearly plays a crucial role
in representing information. Anatomical observations
indicate that shortly after the transduction front-end,

sensory systems process data in successive stages each
composed of a neural population [14]. Examples from
both the early visual pathway [15] and the early auditory
pathway [16] indicate that these populations are highly
redundant, using many more neurons than the previous
stage. This observation raises the question “Why do
neural systems use so much redundancy?”

One possible answer to this question is that neural
systems use the redundancy provided by a frame to
leverage the flexibility possible in the encoding. In
particular, several recent results indicate that neurons
in primary visual cortex may try to sparsify their re-
sponses [15], [17], [18]. Using this flexibility to achieve
sparse codes might offer many advantages to sensory
neural systems, including enhancing the performance
of subsequent processing stages, increasing the storage
capacity in associative memories, and increasing the
energy efficiency of the system [18]. However, sparse
approximation algorithms from the signal processing
community, such as Matching Pursuit (MP) [8] and Basis
Pursuit De-Noising (BPDN) [6], do not have implemen-
tations that correspond both naturally and efficiently to
the distributed parallel computational architectures used
by neural systems [19].

In a search for a distributed processing algorithm that
can calculate sparse codes in a frame, we have recently
developed a system called locally competitive algorithms
(LCAs) [19]. Our LCAs associate each neuron with
an element of the dictionary φk ∈ D. The system is
presented with a (possibly time-varying) input image
x(t). The collection of nodes evolve according to fixed
dynamics (described below) and settle on a collective
output {ak(t)}, corresponding to the short-term average
firing rate of the neurons. The goal is to converge to
coefficients that have few non-zero values while approx-
imately reconstructing the input, x̂ (t) =

∑
k ak(t)φk ≈

x(t).
The LCA dynamics follow several properties ob-

served in neural systems: inputs cause an internal state
to “charge up” like a leaky integrator; states over a
threshold produce non-trivial outputs; and these super-
threshold outputs inhibit neighboring units through lat-
eral connections. We represent each unit’s sub-threshold
value by a time-varying internal state uk(t). When uk
becomes significantly large, the node becomes “active”
and produces an output signal ak used to represent the
stimulus and inhibit other nodes. This output coefficient
is the result of an activation function applied to the
internal state, ak = Tλ(uk), parameterized by the system
threshold λ. We primarily consider activation functions



that operate as thresholding devices — they are essen-
tially zero for values below λ and essentially linear for
values above λ.

The internal states evolve according to the dynamical
system equation

u̇k(t) =
1
τ

mk(t)− uk(t)−
∑
n 6=k

Gk,nan(t)

 , (4)

where τ is the membrane time-constant,
mk(t) = 〈φk,x(t)〉 is the unit’s excitatory input
current, and Gk,n = 〈φk,φn〉 is the inner product
between the node receptive fields. The nodes best
matching the stimulus will have internal state variables
that charge at the fastest rates. These nodes will
cross threshold and become “active” first, inducing an
inhibition signal to every other node. The possibility of
unidirectional inhibition gives strong nodes a chance
to prevent weaker nodes from becoming active and
initiating counter-inhibition, thus making the search for
a sparse solution more efficient.

In [19] we show that the LCA architecture described
by (4) solves a family of sparse approximation problems
by descending an energy function that combines recon-
struction MSE and a sparsity-inducing cost C(·),

E(t) =
1
2
‖x(t)− x̂ (t)‖2 + λ

∑
k

C(ak(t)) .

The specific form of the cost function C(·) is determined
by the form of the thresholding activation function Tλ(·).
For a given threshold function, the cost function is
specified (up to a constant) by

λ
dC(ak)
dak

= uk − ak = uk − Tλ(uk). (5)

This correspondence between the thresholding function
and the cost function can be seen by computing the
derivative of E with respect to the active coefficients,
{ak}. If (5) holds, then letting the internal states {uk}
evolve according to u̇k ∝ − ∂E

∂ak
yields the equation for

the internal state dynamics in (4). As long as ak and
uk are related by a monotonically increasing function,
the coefficients will also descend the energy function E.
Note that the system is not performing direct gradient
descent because the dynamics on uk correspond to
the gradient of E with respect to ak. The system is
performing a gradient descent that has been warped by
Tλ(·). This warping allows the internal state variables to
determine an effective direction even when they are near
zero (and the gradient of energy function looks flat) and
it favors nodes that are already active.

We are most interested in thresholding functions

T(α,γ,λ)(uk) =

{
uk − (αλ) · sign(uk) if |uk| ≥ λ
0 if |uk| < λ

(6)
called a “hard” threshold when α = 0 and “soft”
threshold when α = 1. By using smooth analytic
functions and taking the limit, we can calculate the
corresponding cost functions in the special case of hard
and soft thresholding [19]. The soft-thresholding locally
competitive algorithm (SLCA) applies the `1 norm as a
cost function on the active coefficients, C(1,∞,λ)(ak) =
|ak|. Thus, the SLCA is solving the BPDN optimization
in. Alternately, the hard-thresholding locally competitive
algorithm (HLCA) applies an `0 -like cost function
by using a constant penalty regardless of magnitude,
C(0,∞,λ)(ak) = λ

2 1(|ak|>λ), where 1(·) is the indicator
function evaluating to 1 if the argument is true and 0 if
the argument is false. Because the `0 -penalty is non-
convex, the HLCA will only find a local minimum of its
desired objective function. Many sparse approximation
methods have been reported recently, and several of these
algorithms are closely related to discrete approximations
of our LCAs. In particular, the family of “iterative
thresholding algorithms” [20]–[24] can be viewed as
discrete approximations to the continuous-time LCAs.

Numerical experiments have shown that the HLCA
produces `0 sparsity-MSE tradeoffs comparable to MP.
Furthermore, SLCA produces coefficients with signif-
icant `0 sparsity (comparable to an oracle threshold
applied to the results of an interior point BPDN solver).
Note that SLCA keeps many coefficients zero through-
out the calculation and has no need for an oracle
threshold. This sparsity-MSE tradeoff is demonstrated in
Figure 1. The LCAs have also demonstrated extremely
efficient encodings for time-varying signals (e.g., video
sequences), as discussed thoroughly in [19].

V. CONCLUSIONS

We have seen two scenarios where frame theory has
provided an analytic framework to understand the infor-
mation processing in a sensing system with distributed
constraints. In the case of wireless sensor networks, we
see a man-made system where we can characterize how
the noise robustness is affected by a requirement to
reconstruct the sensed data in a particular way. In the
case of neural systems performing sparse approxima-
tion, we see a biological system performing information
processing that can be modeled as a dynamical system
used to calculate coefficients in a frame expansion. In
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Fig. 1. Sparsity vs. MSE tradeoff calculated on 32×32 bandpassed
image patches in a dictionary that was four-times overcomplete.
HLCA and SLCA represent the hard and soft thresholding locally
competitive algorithms. BPDNthr represents an interior point BPDN
solver with an oracle threshold applied. SCLAthr represents the
SLCA system with the same threshold applied.

both cases, the notion of an overcomplete basis was
a powerful tool to analytically characterize the system.
While frames have found great utility in modern signal
processing applications, this provides strong evidence
that they can also be effectively used as models for many
common architectures found in sensing systems.
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