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Abstract

Sparsity-based models have enabled significant advances in many image processing tasks. Hyperspectral

imagery (HSI) in particular has benefited from these approaches due to the significant low-dimensional structure

in both spatial and spectral dimensions. Specifically, previous work has shown that sparsity models can be used

for spectral super-resolution, where spectral signatures with HSI-level resolution are recovered from measurements

with multispectral-level resolution (i.e., an order of magnitude fewer spectral bands). In this paper we expand on

those results by introducing a new inference approach known as reweighted `1 spatial filtering (RWL1-SF). RWL1-

SF incorporates a more sophisticated signal model that allows for variations in the SNR at each pixel as well as

spatial dependencies between neighboring pixels. The results demonstrate that the proposed approach leverages

signal structure beyond simple sparsity to achieve significant improvements in spectral super-resolution.

Index Terms

Hyperspectral imagery, sparse approximation, reweighted `1

I. INTRODUCTION

Hyperspectral Imagery (HSI) captures detailed terrestrial information with high resolution in both

the spatial and spectral dimensions [1]. While this level of detail is important in many remote sensing

tasks such as object detection and material discrimination, acquiring HSI can be more prohibitive than

acquiring multispectral imagery (MSI). For example, sensor fabrication cost and image acquisition time

(for comparable SNR per spectral bin) increases as the sensor’s bandwidth narrows [1]. The financial cost
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differential leads to MSI being more accessible than HSI, both in terms of currently flown instruments

and archived data. In applications where high temporal resolution is required (e.g., due to high velocity of

the imaging platform), the decreasing SNR per bin due to shorter acquisition times might make it more

desirable to combine HSI bins to collect imagery with MSI-level spectral resolution.1

Recent results have shown the potential to use MSI to obtain HSI-level resolution images by performing

spectral super-resolution [2]. The task of super-resolution is to use prior knowledge of the signal statistics

in post-processing to infer the content of the signal at a finer resolution than the original observations. In

photographic images, signal models based on the notion of sparsity (i.e. images can be described by a small

number of atoms in a potentially large dictionary) have been very successful in spatial super-resolution

applications [3].

In previous work we have demonstrated the applicability of sparsity-based methods in spectral super-

resolution for HSI [2]. Specifically, by learning a dictionary of spectral signatures that sparsely decompose

the spectral response in each pixel, we learn an approximation to the data manifold that captures rich

higher-order statistical structure in HSI data. This model can then be used to perform spectral super-

resolution from MSI-level data to HSI-level resolution with very high accuracy [2]. In this work we improve

on these previous results by proposing a reweighted `1 spatial filtering algorithm to incorporate spatial

regularity to improve spectral super-resolution. This approach closely follows recent work in dynamic

filtering where temporal correlations have been used to improve recovery of time-varying signals in a

reweighted `1 framework [4]. The main contribution of this work is to show that more advanced recovery

algorithms can produce significant improvements in the spectral super-resolution results for scenes with

significant spatial regularity, with most of the improvement coming from pixels that are not well-modeled

by a basic sparsity model.

II. SUPER-RESOLUTION VIA SPARSE CODING

A. The Sparse Coding Model

The sparse coding model for HSI represents the observed spectrum at each pixel xi,j ∈ RM by a small

number of terms in a linear generative model

xi,j =
∑

φkai,j,k + εi,j = Φai,j + εi,j,

1In the remainder of the paper we will generically refer to MSI data, including the case of MSI-level spectral resolution from an HSI
sensor.
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where Φ ∈ RM×N is a matrix of (non-negative) dictionary elements, ai,j ∈ RN is the (non-negative)

coefficient vector for pixel {i, j} and εi,j ∈ RM is a noise term. The coefficient values can be recovered

for a given pixel by solving an `1 regularized least-squares optimization problem (termed Basis Pursuit

De-Noising (BPDN))

âi,j = argmin
a
‖xi,j −Φa‖22 + γ ‖a‖1 ,

under positivity constraints (ai,j,k ≥ 0), where γ is a parameter that trades off between the data fidelity

(least-squares) term and the sparsity based regularizer (the `1 norm) [5]. The BPDN optimization can

be interpreted as finding a maximum a-priori (MAP) estimate of the coefficients under assumptions

of Gaussian noise and an independent identically distributed (i.i.d.) Laplacian prior distribution on the

coefficients [2]. This prior probably distribution for the coefficients is chosen to encourage only a small

fraction of them to be non-zero simultaneously (e.g., the prior distribution is chosen to have high kurtosis

so it has a peak around zero).

The `1 regularization approach has previously been shown to be effective for un-mixing in HSI [6]–

[8]. Furthermore, we have previously shown that a completely unsupervised approach can be used with

this model to learn effective dictionary elements [2]. While these learned dictionary elements are not

guaranteed to be material spectra (and so are not called endmembers), previous work has shown that they

are often highly correlated with known materials in the scene. There is no assumption that the coefficients

in each pixel sum to one, meaning that the coefficients can be thought of as relative contributions of

each dictionary to the spectral signature (but the total sum of the coefficients will vary depending on

the total radiance at that pixel). A more detailed examination of the dictionary elements learned under

this model can be found in [2]. Note that although the generative model above is linear, the sparsity

constraint introduces a nonlinear component to the model that can capture data statistics that are not well

represented in a typical linear mixture model (e.g., forming a local approximation to manifold structures

in the data) [2].

B. Spectral Super-Resolution

The main approach to spectral super-resolution will be to learn a dictionary for HSI using a set of

training data, and then use this dictionary (which captures higher order statistics in the HSI data) to

infer HSI-level resolution from MSI data. Since each MSI band corresponds to a weighted pooling of
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measurements taken over several HSI bands, we concisely write the relationship between the (unobserved)

HSI spectrum and the (observed) MSI spectrum using a matrix multiplication

yi,j = Bxi,j = BΦai,j + ε̃i,j,

where yi,j ∈ RP is the MSI spectrum, ε̃i,j = Bεi,j is the MSI resolution measurement error, and B ∈

RP×M is the “blurring” matrix which pools neighboring bands. We note here that in some cases yi,j

completely omits some spectral bands that are in HSI but not measurable with some MSI sensors, but these

bands must still be inferred. Figure 1 shows an example of simulated MSI bands and their relationship to

HSI ranges. Note that while we will typically consider pooling operations that have flat spectral responses

in bands that do not overlap for simplicity, other more realistic models tailored to a specific sensor could

be used as well.

Using the sparse coding model, we infer sparse coefficients in the HSI-level spectral signatures from

the MSI data by performing an inverse problem using BPDN

âi,j = argmin
a
‖yi,j −BΦa‖22 + γ ‖a‖1 . (1)

The HSI spectrum can be recovered from these coefficients by x̂i,j = Φâi,j . In words, the approach above

solves an optimization problem that seeks the HSI coefficients that are both consistent with the model

(i.e., they are sparse) and that explain the measured MSI spectrum. In previous work, the above approach

is demonstrated with different choices for the matrix B (representing MSI sensors and HSI sensors run

at MSI-level spectral resolution), and with scenes collected at different times of the year (i.e., containing

differences in the statistics due to vegetation changes, etc.) [2]. The reconstruction errors between the

true (oracle) HSI and the inferred HSI spectra were very low, in the range of 2-3% relative mean squared

error (rMSE) depending on the case. While this prior work is encouraging, the results also showed that

the relatively small subset of pixels inconsistent with the sparsity model (e.g., mixtures of many types of

vegetation) can be outliers with much worse reconstruction performance.

III. REWEIGHTED `1 FOR SUPER-RESOLUTION

A. Reweighted `1 (RWL1)

As a first step to improving super-resolution performance, we generalize the sparsity model to allow the

SNR for each coefficient to be an unknown parameter that is estimated as part of the inference process. In
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Fig. 1. Simulated MSI responses are comprised of eight spectral bands that pool HSI measurements. The bars show the wavelengths

included in each band for the simulated MSI measurements. The top row shows the water absorption bands that are not included in any

data. The second row shows the spectral ranges that are present in the HSI data but not included in the simulated MSI measurements (i.e.,

these bands must be inferred with no data).

BPDN (equation (1)), the tradeoff parameter γ depends on the SNR (the ratio of the variance in the sparse

coefficients to the noise variance [2]) and is the same for each coefficient. In contrast, the reweighted

`1 (RWL1) framework [9], [10] allows each coefficient ai,j,k its own parameter γi,j,k, where a and γ are

inferred concurrently. Specifically, RWL1 is equivalent to using the iterative Expectation-Maximization

(EM) algorithm to find a joint estimate of a and γ assuming that γ has an i.i.d. Gamma hyperprior

distribution. While more technical details of the model and algorithm can be found in [10], the RWL1

algorithm applied to the super-resolution problem can be stated succinctly as alternating a weighted BPDN

optimization and an analytic update to the weights until convergence:

ân
i,j = argmin

a
‖xi,j −BΦa‖22 + γ0

∑
k

γ̂n−1
i,j,kak,

γ̂ni,j,k =
α∣∣âni,j,k∣∣+ β

,

where α, β and γ0 are parameters related to the hyperprior on γ and n is the iteration number.

One way to intuitively understand the RWL1 algorithm is to understand the effect each γi,j,k has on

the weighted `1 optimization problem. Lowering a given γi,j,k value makes it easier for the corresponding

coefficient to be activated in the next BPDN iteration. By iteratively recalculating the weights, coefficients

that are activated in the initial optimization become more easily activated in future iterations (via smaller

weights) and unused coefficients are more difficult to activate in future iterations (via higher weights).

Additional literature has linked RWL1 to approximating solutions to `p regularized least squares problems

for p < 1 [11] and asymptotic theoretical guarantees in other inverse problems (e.g., compressed
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sensing) [12].

B. Reweighted `1 Spatial Filtering (RWL1-SF)

While spectral statistics are informative enough to perform super-resolution in many cases, spatial

regularity can often be leveraged in some types of scenes to improve performance (especially when the

sparsity model is not a good fit for a given pixel). Spatial regularity was also used recently in the context

of material classification, indicating its utility in HSI [13]. Therefore, as a second step to improving

super-resolution performance, we further generalize the RWL1 model to incorporate spatial information

into the inference process. Specifically, in our proposed reweighted `1 spatial filtering (RWL1-SF), we

update the weights for a given coefficient using a combination of information from the previous iteration

on neighboring pixels (similar to the reweighted `1 dynamic filtering algorithm developed in [4]). In this

way, even weak evidence from individual pixels in a local neighborhood can be aggregated to improve the

inference in cases that would be particularly difficult when just considering individual pixels independently.

To be precise, consider the matrix of all coefficients for the kth dictionary element, [Ak]i,j = ai,j,k. In

each iteration of RWL1-SF, the weight for the kth coefficient at the pixel in row i and column j is set

by a weighted pooling of the previous estimates for the kth coefficient at the neighboring pixels. While

there are many potential ways to implement this spatial aggregation and weight updating, in this paper

we use a simple linear weighted average:

γi,j,k =
α∣∣∣[Ψ ∗Ak]i,j

∣∣∣+ β

where the term [Ψ ∗Ak]i,j represents the {i, j}th term of the kernel Ψ ∈ RL×P convolved with the

spatial field of previous estimates for the kth coefficient. Note that while this spatial regularization can

accumulate weak evidence spread over several neighboring pixels to perform inference, the model does

not force spatial homogeneity so that single-pixel (or sub-pixel) objects are missed. In other words, rather

than low-pass filtering the estimates of interest (the ai,j,k variables), the spatial averaging is applied to

a second order variable (γi,j,k) that simply biases a sparse inference process. In fact, though an explicit

test with single-pixel anomalies is beyond the scope of this letter, previous work using this approach

for dynamic filtering [4] showed that this method of stochastic filtering is particularly robust to model

mismatch.

The kernel Ψ incorporates the knowledge that dependencies should have a limited spatial extent and
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Fig. 2. The kernel Ψ determines the influence from neighboring pixels on coefficient inference at a given location. When the L×P kernel

is centered on the {i, j}th pixel it describes the weighted summation of neighboring coefficient estimates that influence the next coefficient

estimate in that pixel.

will be modulated depending on the distance between the pixels, as depicted in Figure 2. The value

in the {l, p}th entry of Ψ indicates the amount which the {i + l − L/2, j + p − P/2}th element of Ak

influences the {i, j}th element of Ak in the next iteration of the inference. Typically, the center (0,0) value

of Ψ should be unity and the kernel values should taper off towards the edges to represent the decaying

dependence with distance. In this work we use the same 5× 5 pixel Gaussian kernel shape for all parts

of the estimation, but in general each coefficient or pixel location could have a different kernel if there

was advanced knowledge of the spatial and spectral dependencies in the data. Indeed, in scenes with very

different statistics than the HSI used as an example here (e.g., urban scenes), the spatial regularization

process may benefit from a specialized treatment of edges in the image.

IV. PERFORMANCE COMPARISONS

We test the performance of RWL1 and RWL1-SF against previous results on segments of HSI from

Smith Island, VA. These two HSI images were taken by the PROBE2 sensor on October 18, 2001 and

August 22, 2001 and have 113 usable spectral bands spanning the 0.44-2.486µm range (after removal

of water absorption bands and applying atmospheric correction to estimate reflectance) and a spatial

resolution of approximately 4.5m2. We simulate MSI measurements by creating a matrix B to represent

a response function that entirely eliminated measurements in higher wavelength regions and pooled the

remaining HSI measurements into eight spectral bands shown in Figure 1 (each row of B has ones over

bands included and zeros otherwise). We learn a 44-element dictionary Φ on the October 18, 2001 image

as in [2], and test recovery on both images. Of particular note is that the two images were taken several

months apart, and the statistical changes with the seasonal variations made the recovery of the August

image the most challenging test case in prior work [2]. We estimate the original 113 bands from the 8

2More details about this dataset can be found in [14].
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TABLE I
SUPER-RESOLUTION FROM SIMULATED MSI MEASUREMENTS IN TERMS OF RELATIVE MSE AND SPECTRAL ANGLE (SA).

October 18 (Same Day)
rMSE SA (degrees)

Mean Median Mean Median
BPDN 2.33% 0.35% 5.838◦ 3.205◦

RWL1 0.85% 0.24% 3.817◦ 2.683◦

RWL1-SF 0.68% 0.23% 3.447◦ 2.575◦

August 11 (Different Day)
rMSE SA (degrees)

Mean Median Mean Median
BPDN 6.25% 6.25% 11.812◦ 13.587◦

RWL1 3.34% 3.02% 8.824◦ 9.439◦

RWL1-SF 2.45% 1.89% 7.492◦ 7.382◦

simulated MSI bands for both images via BPDN, RWL1 and RWL1-SF.

For testing purposes we recover a contiguous 68x288 pixel region (omitting 11 pixels with severe

sensor errors) from the Smith Island dataset, shown in Figure 3. This region yielded particularly poor

performance when using BPDN for super-resolution in prior work [2]. As shown in Table I, the previous

mean rMSE was 6.3% and the median rMSE was 3.3% for this region on the August image, which is

considerably worse than the performance seen on sets of pixels randomly selected throughout the entire

image (nearly triple the 2.456% mean and an order of magnitude higher than the 0.1219% median rMSE

observed on the full dataset [2]). As stated in [2], BPDN super-resolution resulted in the highest error

in portions of the scene that are expected to have more heterogeneous compositions, therefore making

the basic sparsity model a poorer fit than it is in more homogeneous regions. To illustrate this, Figure 3

shows the distribution of BPDN reconstruction errors (measured in spectral angle) for the same day dataset,

highlighting the difference in performance in distinct regions of heterogeneous materials on the ground.

Unsurprisingly, the higher errors are also concentrated in the HSI spectral bands that are not measured

in the MSI data. Previous work [2] shows that if the same number of measurements are taken over the

whole HSI spectral range (corresponding to an HSI sensor operating in a lower spectral resolution mode

for higher temporal resolution), this ambiguity is reduced and performance increases significantly.

Table I provides mean and median recovery results, illustrating significant performance improvements

when using RWL1 instead of BPDN, and further substantial improvements when using RWL1-SF. Figure 4

illustrates two example pixels that are representative of the easiest and most challenging performance

for the October image. For the best case, the spectra are nearly indistinguishable from the true HSI.

For the worst case reconstruction we note that the errors are clearly concentrated in the unmeasured



9

RGB Image BPDN − Spectral Angle

RWL1 − Spectral Angle RWL1−SF − Spectral Angle

5
10
15
20

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Spectral Angle (degrees)

N
um

be
r B

el
ow

BPDN
RWL1
RWL1−SF

Fig. 3. Left: The RGB image of the October region being tested and the heat maps depicting the spectral angle errors throughout the region

using BPDN, RWL1 and RWL1-SF. The largest improvements over BPDN occur along the shoreline where the material mixture is very

heterogeneous (e.g., water, sand, vegetation) and the sparsity model alone is insufficient. Right: The cumulative distribution function (CDF)

of the spectral angle errors. Note that the BPDN CDF has a heavy tail, indicating many pixels with poor performance. RWL1 improves

performance significantly. RWL1-SF uses a model of spatial dependence to further reduce the outliers and improve performance, with 90%

of the pixels having spectral angle errors less than 6.9536 degrees.
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Fig. 4. Two example spectra super-resolved from MSI-level data. Top plot is representative of best-case performance and bottom plot is

representative of worst-case performance for previous approaches [2]. Note that errors are highly concentrated in unmeasured bands.

(high wavelength) spectral ranges and that the proposed algorithms make substantial improvements in

the recovery over the previous results using BPDN. Figure 5 illustrates that the overall statistics of the

data in the August image are also better preserved when using RWL1-SF instead of BPDN, with first

four principal components of the reconstructed data (accounting for 99.99% of the energy in the image

segment) much more closely approximating the principal components of the HSI when using RWL1-SF.
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Fig. 5. The first four principal components the recovered HSI spectra compared to the principal components of the original HSI data.

V. CONCLUSIONS

Super-resolving MSI data to HSI-level spectral resolutions is a technique that is of particular importance

given the value of high resolution spectral information. The proposed algorithms leverage both more

advanced sparsity models in each pixel, as well as spatial regularity between pixels. This increased model

structure improves on previous super-resolution results significantly, especially in the pixels that were

outliers in previous results due to their poor super-resolution performance [2]. Specifically, using additional

intra-pixel structure in RWL1 yielded a 35.62% and 16.29% improvement in the mean and median SA,

respectively. Incorporating spatial dependencies in RWL1-SF boosted these results further, giving a total

of 40.96% improvement in the mean SA and 19.66% improvement in median SA. While the value of

this super-resolution technique will ultimately need to be verified in terms of performance in specific

applications, we note that 90% of the recovered pixels in the current dataset had a spectral angle error

less than 7 degrees. While future improvements may continue to be made, this level of error is well within

the class spectral width of some classifiers currently in use (e.g., 7 degrees to 30 degree in [15]). Again,
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we note that the presented data includes some of the most challenging problem aspects from the previous

work (i.e., difficult pixels and MSI measurements with no data from some HSI bands).

While the previous approach using BPDN achieved very good performance in many cases, the RWL1-

SF enhancement in this work shows substantial improvements in the most challenging test cases. The

increased performance demonstrated here leads us to conclude that important structure beyond simple

spectral sparsity exists in some types of HSI data and can be exploited for significant gains in super-

resolution performance. We also note that this performance improvement comes at moderate additional

cost to the previously reported results (no more than a few EM iterations solving BPDN).

While these results are encouraging, there are several further avenues to explore. Most importantly, we

have evaluated the proposed algorithms on simulated MSI data to facilitate oracle evaluation with ground-

truth HSI data (all in the reflectance domain). A more realistic test with an oracle evaluation would

require registered MSI and HSI data collected simultaneously, and a thorough exploration of whether

super-resolution is best performed before or after atmospheric compensation. Additionally, the form of Ψ

will obviously have a significant impact on super-resolution performance. While the simple Gaussian kernel

worked well on the Smith Island dataset, further work is required to evaluate this spatial regularization

on different types of HSI (especially urban scenes where edges are more prominent) and to determine

better regularization approaches (including possibly learning Ψ from data).
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