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Abstract—The theoretical analysis of randomized compres-  The theoretical analysis of such randomized operators ofte
sive operators often relies on the existence of a concentrah relies on the phenomenon known as concentration of mea-
of measure inequality for the operator of interest. Though sure [3]. Put simply, for any fixed signal RN a suitable

commonly studied for unstructured, dense matrices, matries domized® will imatel th of
with more structure are often of interest because they model randomize will ‘approximately preserve the norm

constraints on the sensing system or allow more efficient sgsn ~ With high probability. More formally, a typical result is ¢h
implementations. In this paper we derive a concentration of following:*

measure bound for block diagonal matrices where the nonzero L .
entries along the main diagonal are a single repeated blockfo Lemmal.l. [4] Let® be anM x N matrix with i.i.d. Gaussian

i.i.d. Gaussian random variables. Our main result states tht entries having variancg%i. Then there exists a constafit> 0

the concentration exponent, in the best case, scales as tHat  gych that, for any € (0,1),

a fully dense matrix. We also identify the role that the signa

diversity plays in distinguishing the best and worst casesrinally, P(|||®z]|3 — [|=]13| > €llz]|3) < 2exp(—~CM€e®). (1)

we illustrate these phenomena with a series of experiments.
Index Terms—Compressive Sensing, concentration of measure,

Johnson-Lindenstrauss lemma, block diagonal matrices. For example, concentration of measure results such as (1)

lead to the Johnson-Lindenstrauss (JL) lemma [5], whidesta

that for a finite cloud of point§) c RY,
. INTRODUCTION

. . L (I=efu—vlz <[[Pu—-v)lz <A +e)[lu—-vlz (2
Signal processing applications today demand ever greater

amounts of high-resolution data. While computing power h&®lds for allu,v € @ with high probability supposing that
mostly been able to support this trend, the same cannot alwdf = O(log(|Q|)e~?). Concentration of measure results can
be said for front-end signal acquisition devices. Recetitgre also lead to the Restricted Isometry Property (RIP) [6] in
has been a great deal of interest in compressive data agguisiCompressive Sensing (CS), which states that (2) holds for al
schemes where the high resolution data RY is acquired Pairsu,v of K-sparse signals iiR" with high probability
using a compressive linear operatbr: RN — RM . In such Supposing thal/ = O(K log(N/K)e™?) [4], [7].
schemes, the data is thought to besparse(i.e., it has few  However, the randomized operators that we have discussed

nonzero coefficients in the time domain or in some transforh Lemma I.1 are dense, implying that the acquisition preces
basis) and if the number of measuremenfsis sufficient, Mustform each measurement as a weighted linear combination

we can recover the signal by solving a convex optimization Of all of the data. If N is large, the storage and use of
program [1], [2]. such operators in any practical system will be computatipna

Randomized designs for compressive linear operators aref§Pensive. Additionally, many acquisition systems mayehav
particular interest. One reason is that the resulting dpesa architectural constraints that restrict how the measunesne
work universally with different signal classes. For exaepl ¢@n be formed from the data. For one example, in a dis-
when a linear operator represented byMnx N matrix has tributed system, communication constraints may limit each
its entries made up of independent and identically disteibu Measurement to being a weighted linear combination of only
(ii.d.) Gaussian random variables, it can be used to aequ subset of the data. Furthermore, to reduce the custoonizati
signalsz that are sparse in most bases. necessary for such a distributed system, it may be necessary

for the measurements to be formed by applying the same
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1-0465. 1Lemma 1.1 follows from Theorem 11.2 by setting = 1.



example, there has recently been interest in measuriby random variable. As such, we require the following estaiels
convolving it with a random pulse and downsampling. Thesesults regarding the tail distribution of random variable
convolution measurement systems lead to computationall . :
. . y P e}_ mma Il.1. [11] Suppose thatv is a Gaussian random
efficient designs and they have been shown to work almost . . . 5
. .vgmable with variances“. Then
as well as dense randomized operators [8], [9]. For a thir
example, we may have streaming data which can only be
accessed in chunks and for the sake of efficiency we may
need to apply the same measurement operator to each block. S ) ) _
In each of these cases, the common theme is that rather th&#$ Property of individual Gaussian random variables will
acquiring the whole data vector via one dense measurem@lgW us to use the following important theorem characiegz
system, the data can be divided naturally into discreteesubsthe tail distributions of sums of random variables.

tions,.and we may acquire this data via repeated applicatipReorem I1.1. [12] Let Ry,...,R; be independent real
of a single (possibly unchanging) measurement system to €g@|ued random variables WIthP (|[R;| > t) < aexp (—ast)

of these subsections. In these types of settings (for eX@mphy )l ¢+ andi. Letd > max; o' andb > az{':1 a=2. Then
with a convolution system where the downsampling interv%ttings _ ZL R, we havel - =
- i=1""

is the length of the random pulse), we may envision the

signal z € RY’ as representing the concatenation =

[l @ -~ «%]" of J component signalgz;}7_, ¢ RY. P (IS|-E[S][>1) < {
The measurement vectgre RM” thus is the concatenation

y= [yl yI' - yT]T of the vectorg); = ®,z;, where®; isa  Before introducing the main theorem, let us present some
matrix of sizeM x N that measures only signgl It follows notation that will be useful. Let be as in (3), where each
thaty = @z, where the resulting/J x N.J measurement &; ¢ RM*N is the same and equal @ (i.e., ®; = &, =

2 t
P(jw|* >t) < 2exp (—F for all ¢t > 0.

2exp (—t2/32b), 0<t<
2exp (—t/8d), t>4

matrix ¢ is zero everywhere except for blocks along the main ..., J). For i = 1,2,..., M, let ¢T denote rowi of
diagonal: ®. As before,z is a concatenation of component signals
P, {z;}/_, c RN. Let X denote theJ x N matrix of the
P = ) (3) component signals such that
@ zf
In a previous paper [10] we derived a concentration of X = : ) (4)
measure bound for such matrices where the nonzero entries z7

of the block diagonal matrix are i.i.d. subgaussian random ) ) .
variables? In this paper, we will analyze the case when th@nd denote t?e non—neg;vatlve eigenvalues of the symmetric
block diagonals are repeatedl; = @, = --- = ®; = &, and Matrix A =X"X as{\;};5,. Let
® is now an i.i.d. Gaussian random matrix. Our main result T N

Lo ) o ’ A=Axz):=[A1 Ay ... A R
detailed in Theorem I1.2, essentially states that the fiiba (2) = A2 €
of concentration behaves as be the vector made up of these eigenvalues.

Equipped with this notation, we now present our main
P(|llyl3 - lzll3] > elle]3) < 2exp(-CMAE), s P
where A = A(z) is a term that depends on the “diversity” of;

Eh? S|g_na}’I.compqnents of (we will explain the meaning of matrix populated with i.i.d. zero mean Gaussian entriesigv
diversity” in Section Il). At one extreme, when the compabhe

X ariances? = -, and let® be anM.J x NJ block diagonal
signals {z;} of = are mutually orthogonal and have equa 7 M 8 g

norm, we haveA(x) = J and the concentration of measuremamx as defined in (3), witkb; = @,j =1,...,J. Then

exponent scales exactly as in (1) for a fully dense random
matrix; that is, it scales with the total number of measunatsie

heorem I1.2. Suppose: € RN/ Let® be a randomM x N

P(|[@x]3 = ll=[I3] > ellz3)

.2 2 2
which in this case equalk/.J. At the other extreme, however, 26Xp{—];{,)66““)\/\”‘%1 b, 0<e< %
when the signal components are all the same modulo a < Me|[A|l1 16|71 )

2exp{——=mrt ), € > e
constant, we have\(z) = 1 and the measurement operator PA=ToTT ) = Mo lIATl

effectiveness is diminished. .
Note that (5) has two cases, each with roughly the same form

II. MAIN RESULT as (1) but with the key difference being an extra factor in the

. rate of concentration that depends on the eigenstructutteeof
A concentration of measure result such as Lemma I.1 can :
nal being measured.

) . - ]
be viewed as a statement about the tail probability bound OF%or purpose of the proof of this theorem, we will require

2[11] A random variablew is subgaussiarif there existsa > 0 such that the follqwmg two lemmas whose proofs can be found in the
E e < exp (1a2t?) for all t € R. appendix.



Lemma I1.2. Suppose: € RN and @ is an M x N matrix
where: .
o1

o=
Ohr

Let® be anM J x NJ block diagonal matrix as defined in (3),

but with all the®; being the same and equal o If y = @z,
then

M
Iyll3 = o Ad,
i=1

where A = X7 X with X defined in (4).

Lemma 11.3. Suppose: € RY is a random vector with i.i.d.
Gaussian entries each having zero mean and variarfcéor
any symmetricN x N matrix A with eigenvalueg\;}Y |,

llyl|3. Note thata ! is constant for a fixed. Hence ford >

max; a;; = M maxj Aj andb > azm- i-,j = 17 Zj A2,
P([lyll3 = lzl3| > ell=(13) <
Elzlly
2exp{~- H32Hb b 0sesqim g
€llzlly 4b
2exp{="gz*} €2 gy
Note that||:z:|\2 = Tr(XTX) = ||\||; since the eigenvalues

{)\ } +_, are non-negative an|¢bg||2 = ||\||3. Substitutingd =
& maxj)\ = 7\l @ndb = % 37 A3 = [\ into (6)
completes the proof.
]
To gain intuition about these types of constrained random-
ized measurement systems we examine the form of (5) more
closely. As we will be frequently concerned with applicaso

there exists a coIIect|on of mdependent zero mean Gaussihere e is small, let us consider the first of the two cases

random variables{w; }; with variances? such that

N
2T Az = g Nw?.
i=1

Proof of Theorem I1.2:

given in (5). DefineA(z) = H:\\H; From the standard relation

between/; andi, norms, for anyx € RV,

1 < A(z) < min(J, N).

The first extreme case\(= 1) is unfavorable as it implies
that compared to a full densé of size MJ x NJ (for

Let y = ®x. The proof will proceed in two parts. First wewhich the concentration exponent would scale with/), we
will calculate E||y||3 to determine the point of concentratiorwould diminish the effectiveness of the measurements by a
for the norm of the measurements. Then, we will calculate tdactor of J. This happens whem has only one non-zero

bounds on the deviation of the measurement norm from trégenvalue. Noting thatd = Z xj :c

expected value.
Applying Lemma 11.2 toy and Lemma 11.3 withz = ¢; for

eachi =1,..., M, we have:
M M N
Iylls =Y oF Ads =YD A,
i=1 i=1 j=1

where eacHw; ; }, ;
able with zero mean and variangé. After switching the order
of the summations and observing tHat{ X7 X) = Tr(X X 7)
whereTr(+) is the trace operator, we have:

Te(XXT) = ||=]3.

N M N
Ellyll5 = Z/\j Zszj = Z/\j =
j=1 i=1 =1

Having established the point of concentration ffy||2,
we next will calculate the probability thaf|y||3 — ||=(]3| >
e||z||3. SinceE|y||3 = ||z|3, this is equivalent to the condition
that [y]13 — Ellyl3| > eE|lyl3. Let @,; = \/Aywi,. Then
w; ; IS a Gaussian random variable with variancgr? and
we havelly|2 = S ZJ , W7 ;. By Lemma Il.1 we have:

s t
P(w;; >t) < 2exp (-W , Vt>0.
We apply Theorem II.1 for the random variabléﬁj, for

all ¢ = ..M andj = 1,...,N, with ¢« = 2 and
oz;jl:2/\j02

, this case happens
when the component signals are the same modulo a scaling
factor. In this case, it is understandable that the conatatr
exponent only scales with the number of measurements per
signal block,M, as we are basically measuring the same signal
J times.

The other extremeN = min(J, N)) case is favorable as
long asJ < N, in which case the concentration exponent

is an independent Gaussian random varkcales at the same rate as for a full dedbsaf size M.J x N.J.

For this case to occud must have/ non-zero eigenvalues and
they must all be equal. By noting that the non-zero eigemslu
of A= XTX are the same as those of the Grammian matrix
G = XXT, the only situation where this is true is when the
component signals are orthogonal and of the s&meorm.
Before going further, it is interesting to point out that
finding the eigenvalues ol = X7 X is equivalent to running
Principal Component Analysis (PCA) on the component
signals. If the component signals are of equal energy and are
all orthogonal, then PCA would give ug equal eigenvalues
whose eigenvectors correspond to the normalized component
signals themselves. Now if the component signals are still
orthogonal but instead have different energy, then PCA will
give us eigenvectors that still correspond to the normdlize
component signals but the eigenvalues will not be equal any-
more. This will result inl < A(z) < J. The same conclusion
holds if the component signals are no longer orthogonal but
still span aJ-dimensional subspace. Now if thecomponent
signals lie on aK-dimensional subspace with® < J, then

= %)\j, to compute the concentration result foonly K eigenvalues will be non-zero ard< A(z) < K.



16 . ! Signal 1 A(x) for sig. 1

0.1 »
[
15.5¢ 3
0 202
I >
15 ~0.1 o I
(a) 0 500 1000 (b) % 10
14.5¢ )
8 Signal 2 A(x) for sig. 2
< 14l 0.1 g
0 § 0.2
135} 5 ‘
k=)
-0.1 o .......mr”l
13t 1 (c) 0 500 1000  (d) % 10
12-50 5(‘)0 10‘00 1500 Fig. 2. (a) Signal 1 withJ =16 _orthogonal signal components.
N - length of signal components (b) \(z) for signal 1. (c) Signal 2 with non-orthogonal signal compo-

nents. (dW\(x) for signal 2.

Fig. 1. The average value aof(x) (over 100 trials) of a vector

z € RN’ composed of i.i.d. Gaussian random variables of mean 0 o
and equal variance as the lengfhof signal components increases fothese randomly generatedl are used to measure this fixed
a fixed number of componenfs= 16. signal z and we plot in Figure 3(a) a histogram m||L2'

This quantity should ideally be concentrated aroun zi
o ) S Using the same fixed signal, we now consider block

A third interesting case worth highlighting is of a clasgjiagonal matrice® of the form (3) with each of the blocks
of signals of lengthNJ whose entries are zero mean i-i-dbeing equal tob. The blocksd are of sizeM x N — 4 x 64
Gaussian random variables of equal variance. It is known thg,q are populated with i.i.d. zero mean Gaussian random
if J < N, any.J vectors of lengthV' composed of i.i.d. yariables with variance;. The resulting matrix® is thus
Gaussian random variables of zero mean and equal variage&ize 1/ x NJ = 64 x 1024, but contains many fewer
will form an almost orthogonal set mN. [6]. This implies that onzero entries (and even fewer independently generated
if the number of signal componentsis much less than the random numbers) than the dense measurement matrix. Since
length of each signal componeit, a signalz from this class oy signal has orthogonal signal components, from Theorem
will have A(z) close to.J. This phenomenon is depicted inj 2 we know that the concentration exponent scales at the
Figure 1, where we experimentally obtained the aver®@8 same rate as for a full densé of size 64 x 1024. We
of random signals: for different signal component lengtN plot in Figure 3(b) a histogram oﬁ“ﬁ formed with 10000
but all with a fixed number of signal components This yandomly generated block diagoribl We see that despite the
suggests that a random signal will concentrate almost as Wglamatically reduced complexity of the measurement matrix
with a block diagonal matrix with repeated blocks (provideg, the concentration of measure behavior is still identical t
that.J < N) as with a full dense measurement matrix.  hat of a fully dense matrix. For each type of matrix, we plot

One final comment about Theorem I1.2 is in order regarding Figure 4 as a function afthe percentage of trials for which
the demarcation between the two cases in (5). One can sl“(qw_ ) < I2zle < (1 4 ¢y, As expected, the curves for the
f— x 2 —_ 1

2(vJ-1 A3 : NP
that (\;:1 b < ”)\‘I‘lcc‘hz)\Hl < 1. For J = 2, the left hand apove two types of matrices are indistinguishable.

term obeys% > % implying that the first case in We now focus instead on a signalwhose signal compo-
equation (5) is guaranteed to include at le@st ¢ < \1/_6_ nents have the same energy but Who)_$£) is non-uniform.
J This signal would have a less desirable concentration of
[1l. EXPERIMENTS measure when using block diagonal matrices. An example
We will demonstrate the concentration phenomenon 19§ such a signal is shown in Figure 2(c) and Xs¢z) is
firstly considering two specific signals. The plots we showlotted in Figure 2(d). It can be calculated froktz) that
are typical of our experiments with other similar signals. A(x) = 5.3341, which is approximately times less than the
To begin, we randomly construct a signal of lengtie4 desired.J = 16. Fixing this signal, we plot in Figure 3(c) a
made up of/ = 16 components, with each signal componertistogram of% when the matrice® are fully dense. As
of length N = 64. Then we perform Gram-Schmidt orthog-shown in this histogram and in Figure 4, it is not surprising
onalization on theJ component vectors to obtain a signathat the concentration of measure behavior for this sigritid w
made up ofJ orthogonal components. The signals plotted fully dense matrices is identical to a signal with orthogona
in Figure 2(a) and the non-zero eigenvaluesict X7 X are components.
shown in the plot of\(x) in Figure 2(b). Fixing this signal, we  Again fixing this new signal, we plot in Figure 3(d) a
next generate a series of random desésmatrices having size histogram of% where the measurement matricésare
64 x 1024, where all the entries of each matrix are i.i.d. zerblock diagona‘ of sizeMJ x NJ = 64 x 1024 with J = 16
mean, Gaussian random variables with variaézpeloooo of identical M x N = 4 x 64 blocks made up of i.i.d. zero
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Fig. 3. Histogram of||®zx||2/||z||2 for fixed z across 10000 randomly generated matridega) Orthogonal signal components, fully dense
64 x 1024 ®. (b) Orthogonal signal components, block diagasalk 1024 ® with repeated blocks. (c) Non-orthogonal signal compagient
fully dense64 x 1024 ®. (d) Non-orthogonal signal components, block diag@dak 1024 ® with repeated blocks. (e) Non-orthogonal signal
components, extended block diagot@® x 1024 ® with repeated blocks.
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Fig. 4. The percent of trials for whichl — ¢) < ||®z||2/|[zll2 <  generated matrice. (a) random signal, fully denge x 1024 ®. (b)

(1+ ¢€). Note that all curves overlap except for the signal having-no .4nqom signal, block diagon@d x 1024 ® with repeated blocks.
orthogonal signal components with block diagofelvith repeated

blocks.

equal variance. This signal is shown in Figure 5 and has

mean Gaussian random variables of variagceis A(z) = A(CCR@: 13.4846 ~ J = 16. We plot in Figure 6 the histograms
5.3341 < J = 16, Theorem I1.2 suggests that the effectivenes¥f "2 for fully dense and block diagonal measurement

of using such matrices is diminished. This is seen in Figuf@atpiclt|e2s respectively. In Figure 7, we plot as a function of
3(d) and Figure 4. e the percentage of trials for whigh —¢) < HITI:TIH; < (l+4e¢)
Since in this case we had accessAt@r) which we know for all 3 types of signals when using block diagonal matrices
to be 3 times less than the optimal value of = 16, we oOf size MJ x NJ = 64 x 1024 with repeated blocks. Here
could consider block diagonal matrices with additional sowve see that using block diagonal matrices on a random signal
that would compensate for this fact. In particular, considgives almost the same concentration of measure as usinyg full
extended block diagonal matricds with J = 16 repeated dense matrices since for our choice #fand N, we have
blocks, but each block now has dimensiddé = 12 andN = J < N.
64. Applying Theorem 1.2, we see thatl’A(z) ~ M J = 64,
and thus we would obtain the same concentration exponent as
for fully dense® of size 64 x 1024. Decidedly from Figure  We have derived a concentration of measure bound for
3(e) and Figure 4, the concentration of measurement behautock diagonal matrices with repeated blocks. These neatric
for theseM’J x NJ = 192 x 1024 block diagonal matrices model constrained data acquisition systems where the data
on this signal is indistinguishable from the earlier favmea is viewed repeatedly with the same measurement block. Our
cases. This suggests that the facAdr:) plays an important main result, Theorem 11.2, shows that the concentration ex-
and precise role in dictating the concentration of measupenent may scale as that for a fully dense matrix despite
phenomena for these block diagonal matrices. the block diagonal matrices having many fewer nonzeros
Lastly, we shall demonstrate that block diagonal matricemdd much lower complexity than the dense matrices. We
with repeated blocks work almost as well as fully dendeave also identified the role that the signal diversity (i.e.
matrices for random signals. Using the same parametersAds)) plays in this concentration exponent. The main intuition
above, we construct a vectaerof length NJ = 1024 whose provided by this result is that repeated applications oktimae
entries are i.i.d. zero mean Gaussian random variables witleasurement operator can leverage the diversity in thelsign

IV. CONCLUSION
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We note thaty’ is just a re-arrangement of and thus
. [9/]}2 = llvll2- Thereforelly[3 = [ly/[l} = ¢ X""X"¢/ =
_S 80r Zi:l ¢1TA¢1
5 |
g so. Proof of Lemma I1.3:
§ BecauseA is symmetric, it has an eigen-decomposition
< A=VDVT, whereD is a diagonal matrix of its eigenvalues
= 40 {\:}Y, andV is an orthogonal matrix of eigenvectors. Then
2 3 Sig. 1, block ® we have:
S 20 J —Sig. 2, block ® , . N ,
X ] == Sig. 3, full ® 2" Az=(Vz2)"'D(Vz) = Z AWy,
Sig. 3, block ® i=1
0 ‘ ‘ : ‘ ‘ .
0 01 0.2 03 0.4 05 wherew = Vz andw = [wy, wa, ---, wy]T. SinceV
€ . . N .. .
is an orthogonal matrix{w;};',; are i.i.d. Gaussian random
variables with zero mean and variange
Fig. 7. The percent of trials for whickl — ¢) < ||®z|2/|z]]2 < ]
(1 + €). Here we see that using block diagonal matrices with repeate
blocks on a random signal gives almost the same concemtrafio REFERENCES
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