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Abstract—The theoretical analysis of randomized compres-
sive operators often relies on the existence of a concentration
of measure inequality for the operator of interest. Though
commonly studied for unstructured, dense matrices, matrices
with more structure are often of interest because they model
constraints on the sensing system or allow more efficient system
implementations. In this paper we derive a concentration of
measure bound for block diagonal matrices where the nonzero
entries along the main diagonal are a single repeated block of
i.i.d. Gaussian random variables. Our main result states that
the concentration exponent, in the best case, scales as thatfor
a fully dense matrix. We also identify the role that the signal
diversity plays in distinguishing the best and worst cases.Finally,
we illustrate these phenomena with a series of experiments.

Index Terms—Compressive Sensing, concentration of measure,
Johnson-Lindenstrauss lemma, block diagonal matrices.

I. I NTRODUCTION

Signal processing applications today demand ever greater
amounts of high-resolution data. While computing power has
mostly been able to support this trend, the same cannot always
be said for front-end signal acquisition devices. Recently, there
has been a great deal of interest in compressive data acquisition
schemes where the high resolution datax ∈ R

N is acquired
using a compressive linear operatorΦ : R

N → R
M . In such

schemes, the datax is thought to besparse(i.e., it has few
nonzero coefficients in the time domain or in some transform
basis) and if the number of measurementsM is sufficient,
we can recover the signalx by solving a convex optimization
program [1], [2].

Randomized designs for compressive linear operators are of
particular interest. One reason is that the resulting operators
work universally with different signal classes. For example,
when a linear operator represented by anM × N matrix has
its entries made up of independent and identically distributed
(i.i.d.) Gaussian random variables, it can be used to acquire
signalsx that are sparse in most bases.
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The theoretical analysis of such randomized operators often
relies on the phenomenon known as concentration of mea-
sure [3]. Put simply, for any fixed signalx ∈ R

N a suitable
randomizedΦ will approximately preserve the norm ofx
with high probability. More formally, a typical result is the
following:1

Lemma I.1. [4] LetΦ be anM×N matrix with i.i.d. Gaussian
entries having variance1

M
. Then there exists a constantC > 0

such that, for anyǫ ∈ (0, 1),

P (
∣∣‖Φx‖2

2 − ‖x‖2
2

∣∣ > ǫ‖x‖2
2) ≤ 2 exp(−CMǫ2). (1)

For example, concentration of measure results such as (1)
lead to the Johnson-Lindenstrauss (JL) lemma [5], which states
that for a finite cloud of pointsQ ⊂ R

N ,

(1 − ǫ)‖u − v‖2 ≤ ‖Φ(u − v)‖2 ≤ (1 + ǫ)‖u − v‖2 (2)

holds for all u, v ∈ Q with high probability supposing that
M = O(log(|Q|)ǫ−2). Concentration of measure results can
also lead to the Restricted Isometry Property (RIP) [6] in
Compressive Sensing (CS), which states that (2) holds for all
pairs u, v of K-sparse signals inRN with high probability
supposing thatM = O(K log(N/K)ǫ−2) [4], [7].

However, the randomized operators that we have discussed
in Lemma I.1 are dense, implying that the acquisition process
must form each measurement as a weighted linear combination
of all of the data. If N is large, the storage and use of
such operators in any practical system will be computationally
expensive. Additionally, many acquisition systems may have
architectural constraints that restrict how the measurements
can be formed from the data. For one example, in a dis-
tributed system, communication constraints may limit each
measurement to being a weighted linear combination of only
a subset of the data. Furthermore, to reduce the customization
necessary for such a distributed system, it may be necessary
for the measurements to be formed by applying the same
weightings to different subsets of the data. For a second

1Lemma I.1 follows from Theorem II.2 by settingJ = 1.



example, there has recently been interest in measuringx by
convolving it with a random pulse and downsampling. These
convolution measurement systems lead to computationally
efficient designs and they have been shown to work almost
as well as dense randomized operators [8], [9]. For a third
example, we may have streaming data which can only be
accessed in chunks and for the sake of efficiency we may
need to apply the same measurement operator to each block.

In each of these cases, the common theme is that rather than
acquiring the whole data vector via one dense measurement
system, the data can be divided naturally into discrete subsec-
tions, and we may acquire this data via repeated application
of a single (possibly unchanging) measurement system to each
of these subsections. In these types of settings (for example,
with a convolution system where the downsampling interval
is the length of the random pulse), we may envision the
signal x ∈ R

NJ as representing the concatenationx =
[xT

1 xT
2 · · · xT

J ]T of J component signals{xj}
J
j=1 ⊂ R

N .
The measurement vectory ∈ R

MJ thus is the concatenation
y = [yT

1 yT
2 · · · yT

J ]T of the vectorsyj = Φjxj , whereΦj is a
matrix of sizeM ×N that measures only signalj. It follows
that y = Φx, where the resultingMJ × NJ measurement
matrix Φ is zero everywhere except for blocks along the main
diagonal:

Φ =




Φ1

. . .
ΦJ


 . (3)

In a previous paper [10] we derived a concentration of
measure bound for such matrices where the nonzero entries
of the block diagonal matrix are i.i.d. subgaussian random
variables.2 In this paper, we will analyze the case when the
block diagonals are repeated:Φ1 = Φ2 = · · · = ΦJ = Φ̃, and
Φ̃ is now an i.i.d. Gaussian random matrix. Our main result,
detailed in Theorem II.2, essentially states that the probability
of concentration behaves as

P (
∣∣‖y‖2

2 − ‖x‖2
2

∣∣ > ǫ‖x‖2
2) ≤ 2 exp(−CMΛǫ2),

whereΛ = Λ(x) is a term that depends on the “diversity” of
the signal components ofx (we will explain the meaning of
“diversity” in Section II). At one extreme, when the component
signals {xj} of x are mutually orthogonal and have equal
norm, we haveΛ(x) = J and the concentration of measure
exponent scales exactly as in (1) for a fully dense random
matrix; that is, it scales with the total number of measurements,
which in this case equalsMJ . At the other extreme, however,
when the signal components are all the same modulo a
constant, we haveΛ(x) = 1 and the measurement operator
effectiveness is diminished.

II. M AIN RESULT

A concentration of measure result such as Lemma I.1 can
be viewed as a statement about the tail probability bound of a

2[11] A random variablew is subgaussianif there existsa ≥ 0 such that
E etw ≤ exp

`

1

2
a2t2

´

for all t ∈ R.

random variable. As such, we require the following established
results regarding the tail distribution of random variables.

Lemma II.1. [11] Suppose thatw is a Gaussian random
variable with varianceσ2. Then

P (|w|2 > t) ≤ 2 exp

(
−

t

2σ2

)
for all t ≥ 0.

This property of individual Gaussian random variables will
allow us to use the following important theorem characterizing
the tail distributions of sums of random variables.

Theorem II.1. [12] Let R1, . . . , RL be independent real
valued random variables withP (|Ri| > t) ≤ a exp (−αit)
for all t and i. Let d ≥ maxi α−1

i andb ≥ a
∑L

i=1 α−2
i . Then

settingS =
∑L

i=1 Ri we have

P (||S| − E|S|| > t) ≤

{
2 exp

(
−t2/32b

)
, 0 ≤ t ≤ 4b

d

2 exp (−t/8d) , t ≥ 4b
d

.

Before introducing the main theorem, let us present some
notation that will be useful. LetΦ be as in (3), where each
Φj ∈ R

M×N is the same and equal tõΦ (i.e., Φj = Φ̃, j =
1, . . . , J). For i = 1, 2, . . . , M , let φT

i denote row i of
Φ̃. As before,x is a concatenation ofJ component signals
{xj}

J
j=1 ⊂ R

N . Let X denote theJ × N matrix of the
component signals such that

X =




xT
1
...

xT
J


 , (4)

and denote the non-negative eigenvalues of the symmetric
matrix A = XT X as{λi}

N
i=1. Let:

λ = λ(x) := [λ1 λ2 . . . λN ]T ∈ R
N

be the vector made up of these eigenvalues.
Equipped with this notation, we now present our main

result.

Theorem II.2. Supposex ∈ R
NJ . Let Φ̃ be a randomM×N

matrix populated with i.i.d. zero mean Gaussian entries having
varianceσ2 = 1

M
, and letΦ be anMJ ×NJ block diagonal

matrix as defined in (3), withΦj = Φ̃, j = 1, . . . , J . Then

P (
∣∣‖Φx‖2

2 − ‖x‖2
2

∣∣ > ǫ‖x‖2
2)

≤





2 exp{−
Mǫ2‖λ‖2

1

256‖λ‖2

2

}, 0 ≤ ǫ ≤
16‖λ‖2

2

‖λ‖∞‖λ‖1

2 exp{−Mǫ‖λ‖1

16‖λ‖∞ }, ǫ ≥
16‖λ‖2

2

‖λ‖∞‖λ‖1

. (5)

Note that (5) has two cases, each with roughly the same form
as (1) but with the key difference being an extra factor in the
rate of concentration that depends on the eigenstructure ofthe
signal being measured.

For purpose of the proof of this theorem, we will require
the following two lemmas whose proofs can be found in the
appendix.



Lemma II.2. Supposex ∈ R
NJ and Φ̃ is an M × N matrix

where:

Φ̃ =




φT
1
...

φT
M


 .

LetΦ be anMJ×NJ block diagonal matrix as defined in (3),
but with all theΦj being the same and equal tõΦ. If y = Φx,
then

‖y‖2
2 =

M∑

i=1

φT
i Aφi,

whereA = XT X with X defined in (4).

Lemma II.3. Supposez ∈ R
N is a random vector with i.i.d.

Gaussian entries each having zero mean and varianceσ2. For
any symmetricN × N matrix A with eigenvalues{λi}

N
i=1,

there exists a collection of independent, zero mean Gaussian
random variables{wi}

N
i=1 with varianceσ2 such that

zT Az =

N∑

i=1

λiw
2
i .

Proof of Theorem II.2:
Let y = Φx. The proof will proceed in two parts. First we

will calculateE‖y‖2
2 to determine the point of concentration

for the norm of the measurements. Then, we will calculate tail
bounds on the deviation of the measurement norm from this
expected value.

Applying Lemma II.2 toy and Lemma II.3 withz = φi for
eachi = 1, . . . , M , we have:

‖y‖2
2 =

M∑

i=1

φT
i Aφi =

M∑

i=1

N∑

j=1

λjw
2
i,j

where each{wi,j}i,j
is an independent Gaussian random vari-

able with zero mean and varianceσ2. After switching the order
of the summations and observing thatTr(XT X) = Tr(XXT )
whereTr(·) is the trace operator, we have:

E‖y‖2
2 =

N∑

j=1

λj

M∑

i=1

Ew2
i,j =

N∑

j=1

λj = Tr(XXT ) = ‖x‖2
2.

Having established the point of concentration for‖y‖2
2,

we next will calculate the probability that
∣∣‖y‖2

2 − ‖x‖2
2

∣∣ >
ǫ‖x‖2

2. SinceE‖y‖2
2 = ‖x‖2

2, this is equivalent to the condition
that

∣∣‖y‖2
2 − E‖y‖2

2

∣∣ > ǫE‖y‖2
2. Let w̃i,j =

√
λjwi,j . Then

w̃i,j is a Gaussian random variable with varianceλjσ
2 and

we have‖y‖2
2 =

∑M

i=1

∑N

j=1 w̃2
i,j . By Lemma II.1 we have:

P (w̃2
i,j > t) ≤ 2 exp

(
−

t

2λjσ2

)
, ∀t ≥ 0.

We apply Theorem II.1 for the random variablesw̃2
i,j , for

all i = 1, . . . , M and j = 1, . . . , N , with a = 2 and
α−1

i,j = 2λjσ
2 = 2

M
λj , to compute the concentration result for

‖y‖2
2. Note thatα−1

i,j is constant for a fixedj. Hence, ford ≥

maxi,j α−1
i,j = 2

M
maxj λj andb ≥ a

∑
i,j α−2

i,j = 8
M

∑
j λ2

j ,

P (
∣∣‖y‖2

2 − ‖x‖2
2

∣∣ > ǫ‖x‖2
2) ≤




2 exp{−
ǫ2‖x‖4

2

32b
}, 0 ≤ ǫ ≤ 4b

d‖x‖2

2

2 exp{−
ǫ‖x‖2

2

8d
}, ǫ ≥ 4b

d‖x‖2

2

.
(6)

Note that‖x‖2
2 = Tr(XT X) = ‖λ‖1 since the eigenvalues

{λj}
N
j=1 are non-negative and‖x‖4

2 = ‖λ‖2
1. Substitutingd =

2
M

maxj λj = 2
M
‖λ‖∞ andb = 8

M

∑
j λ2

j = 8
M
‖λ‖2

2 into (6)
completes the proof.

To gain intuition about these types of constrained random-
ized measurement systems we examine the form of (5) more
closely. As we will be frequently concerned with applications
where ǫ is small, let us consider the first of the two cases
given in (5). DefineΛ(x) =

‖λ‖2

1

‖λ‖2

2

. From the standard relation

betweenl1 and l2 norms, for anyx ∈ R
NJ ,

1 ≤ Λ(x) ≤ min(J, N).

The first extreme case (Λ = 1) is unfavorable as it implies
that compared to a full denseΦ of size MJ × NJ (for
which the concentration exponent would scale withMJ), we
would diminish the effectiveness of the measurements by a
factor of J . This happens whenA has only one non-zero
eigenvalue. Noting thatA =

∑
j xjx

T
j , this case happens

when the component signalsxj are the same modulo a scaling
factor. In this case, it is understandable that the concentration
exponent only scales with the number of measurements per
signal block,M , as we are basically measuring the same signal
J times.

The other extreme (Λ = min(J, N)) case is favorable as
long asJ ≤ N , in which case the concentration exponent
scales at the same rate as for a full denseΦ of sizeMJ×NJ .
For this case to occur,A must haveJ non-zero eigenvalues and
they must all be equal. By noting that the non-zero eigenvalues
of A = XT X are the same as those of the Grammian matrix
G = XXT , the only situation where this is true is when the
component signals are orthogonal and of the samel2 norm.

Before going further, it is interesting to point out that
finding the eigenvalues ofA = XT X is equivalent to running
Principal Component Analysis (PCA) on theJ component
signals. If the component signals are of equal energy and are
all orthogonal, then PCA would give usJ equal eigenvalues
whose eigenvectors correspond to the normalized component
signals themselves. Now if the component signals are still
orthogonal but instead have different energy, then PCA will
give us eigenvectors that still correspond to the normalized
component signals but the eigenvalues will not be equal any-
more. This will result in1 ≤ Λ(x) < J . The same conclusion
holds if the component signals are no longer orthogonal but
still span aJ-dimensional subspace. Now if theJ component
signals lie on aK-dimensional subspace withK < J , then
only K eigenvalues will be non-zero and1 ≤ Λ(x) ≤ K.
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Fig. 1. The average value ofΛ(x) (over 100 trials) of a vector
x ∈ R

NJ composed of i.i.d. Gaussian random variables of mean 0
and equal variance as the lengthN of signal components increases for
a fixed number of componentsJ = 16.

A third interesting case worth highlighting is of a class
of signals of lengthNJ whose entries are zero mean i.i.d.
Gaussian random variables of equal variance. It is known that
if J ≪ N , any J vectors of lengthN composed of i.i.d.
Gaussian random variables of zero mean and equal variance
will form an almost orthogonal set inRN [6]. This implies that
if the number of signal componentsJ is much less than the
length of each signal componentN , a signalx from this class
will have Λ(x) close toJ . This phenomenon is depicted in
Figure 1, where we experimentally obtained the averageΛ(x)
of random signalsx for different signal component lengthN
but all with a fixed number of signal componentsJ . This
suggests that a random signal will concentrate almost as well
with a block diagonal matrix with repeated blocks (provided
that J ≪ N ) as with a full dense measurement matrix.

One final comment about Theorem II.2 is in order regarding
the demarcation between the two cases in (5). One can show
that 2(

√
J−1)

J−1 ≤
‖λ‖2

2

‖λ‖∞‖λ‖1

≤ 1. For J ≥ 2, the left hand

term obeys2(
√

J−1)
J−1 ≥ 1√

J
implying that the first case in

equation (5) is guaranteed to include at least0 ≤ ǫ ≤ 16√
J

.

III. E XPERIMENTS

We will demonstrate the concentration phenomenon by
firstly considering two specific signals. The plots we show
are typical of our experiments with other similar signals.

To begin, we randomly construct a signal of length1024
made up ofJ = 16 components, with each signal component
of length N = 64. Then we perform Gram-Schmidt orthog-
onalization on theJ component vectors to obtain a signal
made up ofJ orthogonal components. The signalx is plotted
in Figure 2(a) and the non-zero eigenvalues ofA = XT X are
shown in the plot ofλ(x) in Figure 2(b). Fixing this signal, we
next generate a series of random denseΦ matrices having size
64× 1024, where all the entries of each matrix are i.i.d. zero
mean, Gaussian random variables with variance1

64 . 10000 of
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Fig. 2. (a) Signal 1 withJ = 16 orthogonal signal components.
(b) λ(x) for signal 1. (c) Signal 2 with non-orthogonal signal compo-
nents. (d)λ(x) for signal 2.

these randomly generatedΦ are used to measure this fixed
signal x and we plot in Figure 3(a) a histogram of‖Φx‖2

‖x‖2

.
This quantity should ideally be concentrated around 1.

Using the same fixed signalx, we now consider block
diagonal matricesΦ of the form (3) with each of theJ blocks
being equal tõΦ. The blocksΦ̃ are of sizeM ×N = 4× 64
and are populated with i.i.d. zero mean Gaussian random
variables with variance1

4 . The resulting matrixΦ is thus
of size MJ × NJ = 64 × 1024, but contains many fewer
nonzero entries (and even fewer independently generated
random numbers) than the dense measurement matrix. Since
our signal has orthogonal signal components, from Theorem
II.2 we know that the concentration exponent scales at the
same rate as for a full denseΦ of size 64 × 1024. We
plot in Figure 3(b) a histogram of‖Φx‖2

‖x‖2

formed with 10000
randomly generated block diagonalΦ. We see that despite the
dramatically reduced complexity of the measurement matrix
Φ, the concentration of measure behavior is still identical to
that of a fully dense matrix. For each type of matrix, we plot
in Figure 4 as a function ofǫ the percentage of trials for which
(1 − ǫ) ≤ ‖Φx‖2

‖x‖2

≤ (1 + ǫ). As expected, the curves for the
above two types of matrices are indistinguishable.

We now focus instead on a signalx whose signal compo-
nents have the same energy but whoseλ(x) is non-uniform.
This signal would have a less desirable concentration of
measure when using block diagonal matrices. An example
of such a signal is shown in Figure 2(c) and itsλ(x) is
plotted in Figure 2(d). It can be calculated fromλ(x) that
Λ(x) = 5.3341, which is approximately3 times less than the
desiredJ = 16. Fixing this signal, we plot in Figure 3(c) a
histogram of‖Φx‖2

‖x‖2

when the matricesΦ are fully dense. As
shown in this histogram and in Figure 4, it is not surprising
that the concentration of measure behavior for this signal with
fully dense matrices is identical to a signal with orthogonal
components.

Again fixing this new signal, we plot in Figure 3(d) a
histogram of ‖Φx‖2

‖x‖2

where the measurement matricesΦ are
block diagonal of sizeMJ × NJ = 64 × 1024 with J = 16
identical M × N = 4 × 64 blocks made up of i.i.d. zero
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Fig. 3. Histogram of‖Φx‖2/‖x‖2 for fixed x across 10000 randomly generated matricesΦ. (a) Orthogonal signal components, fully dense
64 × 1024 Φ. (b) Orthogonal signal components, block diagonal64 × 1024 Φ with repeated blocks. (c) Non-orthogonal signal components,
fully dense64 × 1024 Φ. (d) Non-orthogonal signal components, block diagonal64 × 1024 Φ with repeated blocks. (e) Non-orthogonal signal
components, extended block diagonal192 × 1024 Φ with repeated blocks.
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Fig. 4. The percent of trials for which(1 − ǫ) ≤ ‖Φx‖2/‖x‖2 ≤
(1 + ǫ). Note that all curves overlap except for the signal having non-
orthogonal signal components with block diagonalΦ with repeated
blocks.

mean Gaussian random variables of variance1
4 . As Λ(x) =

5.3341 < J = 16, Theorem II.2 suggests that the effectiveness
of using such matrices is diminished. This is seen in Figure
3(d) and Figure 4.

Since in this case we had access toΛ(x) which we know
to be 3 times less than the optimal value ofJ = 16, we
could consider block diagonal matrices with additional rows
that would compensate for this fact. In particular, consider
extended block diagonal matricesΦ with J = 16 repeated
blocks, but each block now has dimensionsM ′ = 12 andN =
64. Applying Theorem II.2, we see thatM ′Λ(x) ≈ MJ = 64,
and thus we would obtain the same concentration exponent as
for fully denseΦ of size 64 × 1024. Decidedly from Figure
3(e) and Figure 4, the concentration of measurement behavior
for theseM ′J × NJ = 192 × 1024 block diagonal matrices
on this signal is indistinguishable from the earlier favorable
cases. This suggests that the factorΛ(x) plays an important
and precise role in dictating the concentration of measure
phenomena for these block diagonal matrices.

Lastly, we shall demonstrate that block diagonal matrices
with repeated blocks work almost as well as fully dense
matrices for random signals. Using the same parameters as
above, we construct a vectorx of lengthNJ = 1024 whose
entries are i.i.d. zero mean Gaussian random variables with
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Fig. 5. (a) Random signal (signal 3). (b)λ(x) for random signal.
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Fig. 6. Histogram of‖Φx‖2/‖x‖2 for fixedx across 10000 randomly
generated matricesΦ. (a) random signal, fully dense64× 1024 Φ. (b)
random signal, block diagonal64 × 1024 Φ with repeated blocks.

equal variance. This signal is shown in Figure 5 and has
Λ(x) = 13.4846 ∼ J = 16. We plot in Figure 6 the histograms
of ‖Φx‖2

‖x‖2

for fully dense and block diagonal measurement
matrices respectively. In Figure 7, we plot as a function of
ǫ the percentage of trials for which(1− ǫ) ≤ ‖Φx‖2

‖x‖2

≤ (1+ ǫ)
for all 3 types of signals when using block diagonal matrices
of size MJ × NJ = 64 × 1024 with repeated blocks. Here
we see that using block diagonal matrices on a random signal
gives almost the same concentration of measure as using fully
dense matrices since for our choice ofJ and N , we have
J ≪ N .

IV. CONCLUSION

We have derived a concentration of measure bound for
block diagonal matrices with repeated blocks. These matrices
model constrained data acquisition systems where the data
is viewed repeatedly with the same measurement block. Our
main result, Theorem II.2, shows that the concentration ex-
ponent may scale as that for a fully dense matrix despite
the block diagonal matrices having many fewer nonzeros
and much lower complexity than the dense matrices. We
have also identified the role that the signal diversity (i.e.,
Λ(x)) plays in this concentration exponent. The main intuition
provided by this result is that repeated applications of thesame
measurement operator can leverage the diversity in the signal
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Fig. 7. The percent of trials for which(1 − ǫ) ≤ ‖Φx‖2/‖x‖2 ≤
(1 + ǫ). Here we see that using block diagonal matrices with repeated
blocks on a random signal gives almost the same concentration of
measure as using fully dense matrices.

itself to provide concentration results comparable to those
of an unconstrained dense measurement matrix. In the other
extreme, when the signal is essentially unchanging (providing
no diversity), these restricted measurement operators provide
concentration results as if they were only getting data fromone
measurement block applied to one signal component (which
is effectively all that can happen in this case).

This bound may provide the foundation for proving results
such as the JL lemma or RIP for sensing systems that require
using the same randomized measurement operator repeatedly.
As these results will vary depending on the signal structure,
it will be important to characterize the types of signals that
can provide the diversity necessary to achieve favorable con-
centration rates. This characterization of the signal diversity
structure for various signal classes is the subject of our
ongoing research.

V. A PPENDIX

Proof of Lemma II.2:
We first rewrite the block measurement equations asy′ =

X ′φ′, with

y′ =




y1(1)
...

yJ(1)
y1(2)

...
yJ(M)




, X ′ =




X
. . .

X


 ,

andφ′ =




φ1

φ2

...
φM


 ,

whereyj(i) denotes theith component of the measurement
vectoryj andy′ ∈ R

MJ , X ′ ∈ R
MJ×MN , andφ′ ∈ R

MN .

We note thaty′ is just a re-arrangement ofy and thus
‖y′‖2 = ‖y‖2. Therefore‖y‖2

2 = ‖y′‖2
2 = φ′T X ′T X ′φ′ =∑M

i=1 φT
i Aφi.

Proof of Lemma II.3:
BecauseA is symmetric, it has an eigen-decomposition

A = V DV T , whereD is a diagonal matrix of its eigenvalues
{λi}

N
i=1 andV is an orthogonal matrix of eigenvectors. Then

we have:

zT Az = (V z)T D(V z) =

N∑

i=1

λiw
2
i ,

where w = V z and w = [w1, w2, · · · , wN ]T . SinceV
is an orthogonal matrix,{wi}

N
i=1 are i.i.d. Gaussian random

variables with zero mean and varianceσ2.
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