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Abstract—Signals of interests can often be thought to independent and identically distributed (i.i.d.) Gaussia
come from a low dimensional signal model. The exploitation or subgaussian entries will, with high probability, satisf
of this fact has led to many recent interesting advances a condition known as the Restricted Isometry Property

in signal processing, one notable example being in the L
field of compressive sensing (CS). The literature on cs (RIP) [4]. The RIP guarantees that a matrix will approx-

has established that many matrices satisfy the Restricted imately preserve distances between all pairs of sparse
Isometry Property (RIP), which guarantees a stable (i.e., signals. These results have been previously extended
distance-preserving) embedding of a sparse signal modelto show that an undersampled random orthoprojector
from an undersampled linear measurement system. In this can also provide a stable embedding of signals living

work, we study the stable embedding of manifold signal . . :
models using matrices that satisfy the RIP. We show that along a low-dimensional manifold [5], [6]. Such stable

by paying reasonable additional factors in the number of €mbeddings are valuable because they ensure that key
measurements, all matrices that satisfy the RIP can also properties of the signal model are retained in the low-

be used (in conjunction with a random sign sequence) to dimensional measurement space, and this often leads to

obtain a stable embedding of a manifold. guarantees on our ability to recover the original signal
Index Terms—Manifold Embedding, Dimensionality Re- or to perform processing in the measurement space. In
duction, Restricted Isometry Property the particular case of a manifold signal model, a stable

embedding guarantees that manifold learning algorithms
(e.g., Isomap) can be run in the low-dimensional mea-
surement space nearly as accurately as (and much more
A significant amount of modern work in Signa'efﬁcienUy than) in the original signal space [7].
processing rests on the observation that many high-Recenﬂy the CS community has turned to investi-
dimensional signals in fact have an intrinsic lowyating structured measurement systems because unstruc-
dimensional structure. Models for characterizing suc?]red systems (e.g., those corresponding to i.i.d. random
structure can often be interpreted geometrically; sparggtrices or random orthoprojectors) may be impracti-
signals, for example, are constrained to live near @ due to memory constraints, computational costs, or
union of low-dimensional subspaces within the ambjsrohibitions in the data acquisition architecture. Selvera
ent high-dimensional signal space [1], while parametrigryctured CS systems, such as random convolution
signals and certain non-parametric signal collections af0stems (described by partial Toeplitz [8] and circulant
constrained to live near low-dimensional manifolds [2]matrices [9]) and deterministic matrix constructions [10]
[3]. Such low-dimensional geometric structures can kgyye emerged that satisfy the RIP while requiring only
useful for reducing the burden of acquiring, storing, ang sma|l increase in the number of measurements beyond
processing high-dimensional signals thanks to the faghat is needed for an unstructured random matrix. At
that these structures have been shown to support stalglg; glance, it may appear that these structured embed-
distance—preser_ving embeddings via linear mappings infthg results are limited to sparsity-based signal models
a lower-dimensional space. and cannot be generalized to models such as manifolds.
In the field of compressive sensing (CS), for exam- | this paper, we show that by paying reasonable
ple, it is known that random matrices populated Witactors in the number of measurements, all measurement
_ _ systems that satisfy the RIP for sparse signals can also
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I. INTRODUCTION



on a recent result [11] showing that when the columraong on the manifold. Also, for a given pointe M,
of an RIP matrix are modulated by a random sigwe let Tan, denote the tangent space .®f atz. For a
sequence, the matrix will obey a form of the Johnsomnanifold of dimensionk’, Tan, can be thought of as a
Lindenstrauss (JL) lemma and can therefore provid€-dimensional linear subspace &f¥.
a stable embedding of an arbitrary finite point cloud. e also describe two quantities that are used for
Following similar arguments to [5], we extend the finitgnaracterizing the properties of manifolds. The first is
JL result to all points living along a manifold. Aftershe condition numbert, first described in [12] and later
covering the necessary background in Section Il, we stafge in [5]. The condition number provides a bound on
our main result and its implications in Section lll. SeCtne worse case curvature of any unit speed geodesic path
tion IV contains the supporting proofs, while Section \4jong the manifold. More explicitly, for larger values of
concludes. T, it is guaranteed that for two nearby pointsy € M
the angle betweetan, andTan, will be small. A large
Il. BACKGROUND value forr also ensures that two poinisy € M with
A. RIP and Stable Embeddings large geodesic distanaéy(z,y) cannot be arbitrarily
We formally state the RIP in the following definition.close in Euclidean distancgr — y|,. The interested
reader is referred to [12], [5] for an explicit definition of

Definition 11.1. A linear operator ® : RY — RM  the condition number and for formal descriptions of its
satisfies thdRestricted Isometry Propertf orderS and implications.

conditioningd (or RIP-(S, ) in short) if for all z € RY

with at mostS nonzero entries, we have A second useful quantity concerns the covering regu-

larity of a manifold. Before describing this quantity, we
(1—=8)||z]3 < [|@z]|3 < (1 +9)||z]3. require the following definition.

~ Formore general signal families, we make the followbefinition 11.3. Let M be ak-dimensional Riemannian
ing definition. submanifold ok . Thegeodesic covering numbef M

Definition 11.2. A linear operator® provides astable at resolution”’ > 0, denoted byG(T), is the smallest
embeddingof a subsetM ¢ RV with conditioninge if NUMber such that there exists a finite stz M with

for all pairs =1,z € M, we have |A| = G(T) such that for allx € M,

[ @21 — Bas s min dyi(x,a) < T.

(1—¢) < < (1+e). 1)
21 — 222 Any setA that satisfies the above condition is called a
Alternatively, one may define geodesic covering set of resolutidhand in particular,
z—y any such setd with |A| = G(T) is called aminimal
UM) = {ff—y|2 |2,y e M, = # y} . (2) geodesic covering set of resolutidh

which is the set of all directions (normalized difference Now, the following definition of covering regularity
vectors) between pairs of points.ivi. Then® is a stable allows us to enumerate minimal geodesic covering sets
embedding ofM with conditioninge if and only if of a manifold. This will be useful in our analysis when
~ we approximate a manifold with its covering set.
sup ’||(I>:L’||2 — 1’ <e.
z€U(M) Definition 11.4. Let M be aK-dimensional Riemannian

A well known interpretation of the RIP is as a stableubmanifold oR" having volumé/. We say that\t has
embedding of sparse vectors. In particular, an opera@eodesic covering regulariti® for resolutionsT < Tj
satisfying RIP-2S, §) provides a stable embedding withif
conditioningd of the union of allS-sparse subspaces. REVKK/2

G(T) <
TK

B. Manifold Characteristics holds for all T < Tp.

We present here some relevant terminology used for
discussing manifolds. For a Riemannian submanifold As in [5], we shall neglect the minor dependence of
M C R¥, we letd(z,y) denote the geodesic distancghe geodesic covering regularitig on the maximum
between two points, y € M; in other wordsda(z,y) resolution7, and assume that the formula fc¥(7)
denotes the length of the shortest path betweemdy works for the range of’ considered in this paper.



C. Related Work of compressive linear operators that can provide a stable

The work in this paper is most closely related to [5{"2nifold embedding.
and [6], which both showed that a random orthogonal This work is also related to current research o:.] ex}eryd—
projection fromR Y into R will, with high probability, ing the.JL”Iemma to data sets 'thallt have low “intrinsic
provide a stable embedding of i-dimensional mani- dimension” [14], [15], [16]. In this line of research, the

fold M C RY. In each of these works, the requisite?PE" guestion is whether a finite data d&tec RY
number of measurements scales only linearly in tf8at has lowdoubling dimensioh D < log(|B|) can be
manifold dimensionK and logarithmically in certain stgbly embedded into a space whose dimension scales
other parameters of the manifold. In [5] as well as jyith D but notlog(|B|) as in the JL lemma. Our work
this work, there is an additional logarithmic dependend@n Pe considered a small step in this direction as it
on the ambient dimensiof . allows consideration of the special case whérds a

The proof of each of these results requires consideljﬁ'-emanm‘"In submanifold.
tion of a finite covering of points carefully chosen from
the manifold. Using the JL lemma [13], it then can be . MAIN RESULT
argued that, with high probability, a random orthogonal The main result of this paper is captured in the
projection will provide a stable embedding of thes#éollowing theorem.
points. Following this, various geometric arguments all-_
low one to conclude that the same orthogonal projecti
will provide a (slightly weaker) stable embedding of th
entire manifold M.

Formally, the JL lemma guarantees that for any fini
setE ¢ RV, arandom orthogonal projectdr ¢ RM >N
will provide a stable embedding d with conditioning
¢ with high probability if M — O(log(|E]) - € 2). $>0 (Klog (RVN) +log <1)> _
Recent research has uncovered several other techniques TE P
for constructing® that also satisfy the JL lemma. InLet D be a diagonal Rademacher matrix, and define
particular, it has recently been shown [11] that an$ — &D. Then with probability greater than — p, ®

M x N matrix ® that satisfies the RIP can also be Usegrovides a stable embedding Off with Conditioninge_
in the JL lemma if its columns are randomized by a

length4V sequence of:1's. To state this result formally,
we make the following definition.

heorem Ill.1. Let M be a compactk -dimensional
Rlemannian submanifold @& having condition num-
Ber 1, volumeV, and geodesic covering regulariti.
tFix a failure probability0 < p < 1 and a conditioning
§<e<1 Supposed € RM*N satisfies RIP-§, )
with

The proof of this theorem can be found in Section IV.
The theorem essentially says that stable manifold em-
bedding can be obtained, with high probability, from any
Definition 11.5. A diagonal Rademacher matrig an RIP matrix®, provided that the RIP order is proportional
N x N diagonal matrix populated with a lengtN- to the dimension of the manifold, and provided that the
sequence of independeat-Bernoulli random variables RIP conditioning is sufficiently tight. Therefore, from
on the main diagonal and with zeros elsewhere. any of the known constructions of RIP matrices with a

Multiplying any fixed matrix on the right byadiagonalnumber of rows proportional to the RIP order, we can

Rademacher matrix will therefore randomize its columﬂbtam a stable mamfo!d embedding W'Fh a ngmber. of
signs. The following theorem is a slightly modifiegM€asurements proportional to the manifold dimension.
version of Theorem 3.1 from [11] We illustrate the implications of our result with a few

notable examples below.

Theorem II.1. [11] Let0 < p<land0 < € < 1, and In the corollaries that follow, we assume thét is a
let £ be a finite set of points iR". Suppose@ € RM*"  compactk -dimensional Riemannian submanifoldR¥’
satisfies RIP-f, ) with having condition numbeé, volume V, and geodesic
4|E| covering regularityR. We also assume a fixed failure
S > 401log (p) , probability 0 < p < 1 and conditioning) < e < 1.

Corollary 1ll.1 (Subgaussian matricespupposed €

and let® = @D where D is a diagonal Rademacher paxN s a random matrix populated with i.i.d. subgaus-

matrix. Then with probability exceeding— p, ® will

provide a stable embedding &f with conditioninge’. 1Thedoubling constanh g of a setB is the smallest numbex > 1
) ] such that every ball irB can be covered by at moatballs of half its
It is this result that we leverage to expand the rangedius. Thedoubling dimensiorof B is D = log,(A\p).



sian random variables having zero mean and varianand D is a diagonal Rademacher matrix, then with

ﬁ. If probability greater thanl — p, ® = ®D is a stable
embedding ofM with conditioninge.
M>O< (Klog(RVN)+1Og( ))1Og (%)) Again, this corollary follows from the fact [10]

that such matrices satisfy RIB;($) wheneverM >
then with probability greater than — (e =) 4 p), & O (%22 log?(N) ). Despite the additional number of re-
provides a stable embedding #ff with conditioninge.  quired measurements, deterministic matrices are of in-
terest to the CS community because there currently do
not exist any tractable algorithms for verifying whether
a randomly constructed matrix satisfies the RIP.

The proof of this corollary follows from the fact [1]
that subgaussian random matrices satisfy RIR with
high probability wheneveis > O (£ log (%)) and the
fact that, for a diagonal Rademacher mathand ii.d.
subgaussian matri®, both ® and ®D have the same
distribution. This corollary formally proves a remark Our proof of Theorem lil.1 follows the basic structure
made briefly in [5]—that stable manifold embeddingsf the proof of Theorem 3.1 in [5]. We also borrow a
can arise not only from random orthogonal matrices bt of terminology from [18], which helps delineate the
also from random subgaussian matrices. geometric and probabilistic aspects of the problem.

To be specific, in order to prove Theorem IIl.1, our

IV. PROOF OFMAIN RESULT

Corollary 111.2 (Partial circulant matrices)Suppose : ‘ =
. X ) ! s oal is to show thatu ®zxlls — 1| < € holds
® < RMXN js a partial circulant matrix with ) Pocu(a) |[| ]2

Rademacher entries and arbitrarily selected rows (se With probability at least —p. To reduce the complexity
[9] for a detailed construction). If of bounding the the random procebgbeQ - 1‘ over
R the infinite set of pointd/ (M), we explain that it is in
(K log (B¥) 4 log ( )) * log? (N)) some sense sufficient to COﬂSiC’@&\)fEHQ - 1Lonly over
some finite samplind/(B) C U(M) which we refer

and D is a diagonal Rademacher matrix, then withg a5 acovering setFinally, we apply the RIP/JL result

probability greater thanl — O(p), ® = @D is a stable from [11] to guarantee thabax,cy(s) ‘H‘I’fﬂHz . 1‘ is
embedding ofM with conditioninge.

o

small with high probability.

Here, the proof follows from the fact [9] that
partial circulant matrices satisfy RIP(0) with A, Covering Set

probability greater thanl — p whenever M > The covering seV(B) C U(M) is defined in terms

o %/2 log®/2(N) log g,l;)) This result makes possi-of 3 set of pointsB ¢ M, which we refer to asnchor
ble one efficient implementation of a dimensionalityyoints We define the seB according to the following
reduction scheme for manifold-modeled data. One woulleps. LetT” > 0, v > 0 denote some variables whose
first preprocess the ambient data " by multiply- values will be fixed later in Lemma IV.1. Then let be
ing the entries with a Rademacher sequence (thatdfy minimal geodesic covering set.6f with resolution
fixed beforehand). Then one would simply convolve thg. According to Definitions 11.3 and 1.4, this means that

processed data with a random sequence (made upf&f any pointz € M, minge 4 dag (z,a) < T and that
Gaussian random variables or a separate Rademacher
REVKK/?

sequence) and arbitrarily selekf samples of the con- |A| = G(T) <

volution output. One can also imagine using other effi- =

cient dimensionality reduction schemes that require onlyext, for everya € A, define@;(a) to be a minimal

M = O (K log?(N)) measurements for some integer ~-net of the unit sphere olan, in the sense that for

for example by taking® to be a subsampled Fouriereveryu € Tan, with |luljz = 1, we have

matrix [17].
min v =gl <.

Corollary 111.3 (Deterministic binary matrices)Sup- ac

posed c {0,1}M*N is a deterministic matrix following From standard volumetrlc estimates (see for example

the construction given in [10]. If [18]), this can be accomplished with
RVN 2 2 2\ 3\ %
M > 0 (% (log (1) + 1o (1)) o) ) @@= (1+2) < (%)



Note that since every € Q(a) belongs in the unit note that if® satisfies RIP-f, ;) as required here, it
sphere [|l¢||2 = 1. We also define a renormalized set also satisfies RIPS ) as required in Lemma IV.1.
For the cardinality ofU(B)|, we note thaiU (B)| <

@2(a) ={Tq : ¢ € Q(a)}, |BJ? and that
so that||q|| = T for all ¢ € Q2(a) and so that for every B
u € Tan, such that||u|s = T, we have 1Bl = 26;4(1 +1@2(a)l) = ;4(1 +1Qu(a)l)
min Hu —ql2 < T. REVKE/2N 3\ K
= (F=—)C)
Since Qz(a) is merely a renormalization of);(a), E K
|Q2(a)| = |Q1(a)|. Finally, the set of anchor points of < 32U/ KRVVEJKN3/?
M is defined as - C1Car(e)3
B = U {a} U (a+ Qz(a)), Therefore,
acA 4‘3‘2
wherea + Q(a) is the set of tangents anchored at th&8 ( P > = 2log(|B]) + log(4/p)
point a (instead of the origin). - 5. 91/K QU1K RN/
<
B. Embedding G S Cilhr(e)
. Embeddin uarantee
cong | +log(4/p). 7)
Returning to the goal of our proof, we wish to show
that for somed < ¢ < 1, Plugging (7) into (6), we conclude that # satisfies
N the RIP of the orderS stated in Theorem Ill.1 with
sup ’||‘I’$||2 - 1’ <e (3)  conditioning 5, then
zeU(M)
The following lemma, which collects and modifies sev- P! sup ‘H‘I’Tﬂz _ 1‘ > €
eral results from [5], relates the supremum of our random 2eU(M
process ovel/ (M) to its maximum ovelJ (B). N
. IP{ max ]||q>x\\2_1‘ }<p
Lemma IV.1. Let M and ¢ be as in the statement of zeU(B) 16

Theorem III.1. Suppose € RM*V satisfies RIP-§, <)

for any S < N and let® = ®D whereD is a diagonal V. CONCLUSIONS ANDFUTURE WORK
Rademacher matrix. LeB C M be a set of anchor In this paper, we showed that all measurement opera-
points as defined above, specifically whéte= clT"z tors ® satisfying the RIP can also be used (in conjunction
v = \(’;“;Vi C: < ﬁ, andCs < 3123 Then with a random sign sequence) to obtain a §t.able embed-
R R ding of a manifold. Moreover, we gave specific examples
sup ’||<I>ac|\2 - 1’ <16 max ’||<I>33H2 - 1‘ . (4) of such operators, namely subgaussian random matrices,
z€UM) 2€U(B) random convolution matrices and deterministically con-
Proof: See the Appendix for a proof sketch, whicrstructed matrices, together with the requisite number of
closely follows the results in [5]. m measurements needed for each operator to ensure a stable
Therefore, if the assumptions of Lemma IV.1 are megmbedding of the manifold with high probability and for
then (3) will be attained if we can prove that a pre-determined conditioning. This result represents a
combination of two directions of recent interest in the
LIEHaX ‘||‘I’$||2 - 1‘ < 16 (5) €S community: structured measurement matrices and the

development of structured signal models beyond sparsity.
To ensure that (5) is true with high probability, we apply while this result is encouraging, there are several areas
Theorem I1.1 withE = U(B) and with conditioning of improvement that would be valuable. For example, we
¢’ = {5 to conclude that, if> satisfies RIP-§, i7) With  note that our Lemma IV.1 is an extension of Lemma 3 in
A|U(B)| [18]. There, the author showed that we can replace the
S > 401 ( ) ; (6) unit sphere inRY with a finite covering of the sphere
R and we extend this idea to discretizing the set of all
then with probability exceeding — p, ® will provide directions of a manifold/(M). However, compared to
a stable embedding df (B) with conditioning 5. We  [18], our lemma ishot operator agnostic in the sense that



the operato@ involved in the random process needs tfrom the geodesic covering set. This is the topic
be derived from an operator satisfying the RIP. Ther@ Lemma 3.3 in [5]. Additionally, we require thé,
are advantages to being operator agnostic, including therm of our operato® to be bounded, and an ade-
result that a simple concentration of measure inequalipate bound follows from the fact thét satisfies RIP-
for the operator® will suffice to ensure a stable embed{S, {). In particular, using elementary geometry we have:
ding of the manifold (instead of specifically requiring|®|, = [|®[. < (1+ £)V/N. Finally, Section 3.2.5
Theorem 11.1). Second, our result includes a logarithmig [5] determines the specific values f@r and v that
dependency on the ambient dimensiSrwhich we sus- we require to define the covering sBt
pect is suboptimal because [6] shows a stable manifoldAnother way to view Lemma IV.1 is as follows. Sup-
embedding without this dependence. We are curreniyyse we fixd with RIP conditioningy and fix parameters
pursuing ideas related to different constructions of the and ~ of the covering sef3. Then these parameters
covering set to try and tackle these issues. limit the possible range of values of the conditioning
Finally, another open question is whether the introdugarametek that can be achieved for a stable embedding

tion of the random Rademacher sign sequence was @p-A1. More specifically,e > max

solutely necessary to prove our desired result. Note that
this sign sequence introduces a notion of universality into
® that allows it to be used with manifold signal models.
However, just as the RIP can be shown without recoursi]
to universality (e.g., subsampled Fourier matrices mea-
suring only sparse signals but with degradation when
working with signals that are sparse in other bases), (2l
is perhaps possible that a less stringent condition can be
imposed on® and still achieve stable embeddings of a3

class of manifolds.
[4]

(5]

(6]
The proof of this lemma essentially follows from
Lemmas 3.1, 3.2, 3.3 and Section 3.2.5in [5]. In wordsm
we expresd/(M) as the union of two sets:

APPENDIX
PROOFSKETCH FORLEMMA V.1

UM M) = {M € UM) | dp(ar,a2) < a} (8]
[z1 — @22

Ug(./\/l):z MEU(M)|dM(QT1,$2)>Oé . [9]
[z1 — @22

The first of these sets contains normalized differen¢ed]
vectors between all nearby points okt, while the [11]
second contains normalized difference vectors between
all faraway points onM; the parameterx delineates
nearness from farness. Denoting the random process

Z(x) := ‘H&)x”z - 1‘, we then see that
(13]
sup Z(x) = max sup Z(z), sup Z(x) 14
2€U(M) 2€UL (M) 2eUL (M) o4l

From here, we first observe that the each of the vectd?s]
in U (M) can be approximated by some tangent vectefg
in some tangent plane to the manifold from the set
Uaea(a+ Q2(a)). This fact is the topic of Lemmas 3.1
and 3.2 in [5]. Second, we observe that each vector [Il’l]
UZ(M) can be approximated by some pair of points

NT N
{46, /3, 0},
REFERENCES

R. G. Baraniuk, M. A. Davenport, R. A. DeVore, and M. B.
Wakin, “A simple proof of the restricted isometry property for
random matrices,Const. Approx.vol. 28, no. 3, pp. 253-263,
Dec. 2008.

D. L. Donoho and C. Grimes, “Image manifolds which are
isometric to Euclidean space]. Math. Imaging Comp. Vision
vol. 23, no. 1, pp. 5-24, July 2005.

M. Turk and A. Pentland, “Eigenfaces for recognitiod,”Cogn.
Neurosci, vol. 3, no. 1, pp. 71-83, 1991.

E. J. Canés, “Compressive sampling,” roc. Int. Congr. Math.
vol. 3, Madrid, Spain, August 2006, pp. 1433-1452.

R. G. Baraniuk and M. B. Wakin, “Random projections of sripo
manifolds,” Found. Comp. Mathwvol. 9, no. 1, pp. 51-77, 2009.
K. L. Clarkson, “Tighter bounds for random projectionisnoani-
folds,” in Proc. 24th Annual Symp. on Computational Geometry
ACM, 2008, pp. 39-48.

C. Hegde, M. Wakin, and R. Baraniuk, “Random Projections
for Manifold Learning: Proofs and AnalysisTechnical Report
TREE 0710, Rice UniversitR007.

J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, “Toeplitz
compressed sensing matrices with applications to sparsexehan
estimation,”IEEE Trans. Inform. Theory2008.

H. Rauhut, J. Romberg, and J. Tropp, “Restricted isome-
tries for partial random circulant matricesArxiv preprint
arXiv:1010.1847 2010.

R. A. DeVore, “Deterministic constructions of compressens-
ing matrices,"J. Complexityvol. 23, no. 4-6, pp. 918-925, 2007.
F. Krahmer and R. Ward, “New and improved Johnson-
Lindenstrauss embeddings via the Restricted Isometry Rygper
Arxiv preprint arXiv:1009.07442010.

[b%} P. Niyogi, S. Smale, and S. Weinberger, “Finding the hargyl

of submanifolds with high confidence from random samplés,”
Discrete and Computational Geometiylarch 2008.

S. Dasgupta and A. Gupta, “An elementary proof of the $ohn
Lindenstrauss lemmaRandom Struct. Algagrvol. 22, no. 1, pp.
60-65, 2002.

L. A. Gottlieb and R. Krauthgamer, “A nonlinear approatth
dimension reduction,Arxiv preprint arXiv:0907.547,72009.

A. Gupta, R. Krauthgamer, and J. Lee, “Bounded geometries
fractals, and low-distortion embeddings,” 2003.

] P. Indyk and A. Naor, “Nearest-neighbor-preserving ethib

dings,” ACM Trans. Algorithms (TALG)vol. 3, no. 3, p. 31,
2007.

M. Rudelson and R. Vershynin, “On sparse reconstractiom
Fourier and Gaussian measuremen@gmmunications on Pure
and Applied Mathemati¢siol. 61, no. 8, pp. 1025-1045, 2008.



[18] R. Vershynin, “Introduction to the non-asymptotic aysé of
random matrices,Compressed sensing: theory and applications.
Cambridge University Press. Submitted



