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Stable Manifold Embeddings with Operators
Satisfying the Restricted Isometry Property

Han Lun Yap,∗ Michael B. Wakin, and Christopher J. Rozell

Abstract—Signals of interests can often be thought to
come from a low dimensional signal model. The exploitation
of this fact has led to many recent interesting advances
in signal processing, one notable example being in the
field of compressive sensing (CS). The literature on CS
has established that many matrices satisfy the Restricted
Isometry Property (RIP), which guarantees a stable (i.e.,
distance-preserving) embedding of a sparse signal model
from an undersampled linear measurement system. In this
work, we study the stable embedding of manifold signal
models using matrices that satisfy the RIP. We show that
by paying reasonable additional factors in the number of
measurements, all matrices that satisfy the RIP can also
be used (in conjunction with a random sign sequence) to
obtain a stable embedding of a manifold.

Index Terms—Manifold Embedding, Dimensionality Re-
duction, Restricted Isometry Property

I. I NTRODUCTION

A significant amount of modern work in signal
processing rests on the observation that many high-
dimensional signals in fact have an intrinsic low-
dimensional structure. Models for characterizing such
structure can often be interpreted geometrically; sparse
signals, for example, are constrained to live near a
union of low-dimensional subspaces within the ambi-
ent high-dimensional signal space [1], while parametric
signals and certain non-parametric signal collections are
constrained to live near low-dimensional manifolds [2],
[3]. Such low-dimensional geometric structures can be
useful for reducing the burden of acquiring, storing, and
processing high-dimensional signals thanks to the fact
that these structures have been shown to support stable,
distance-preserving embeddings via linear mappings into
a lower-dimensional space.

In the field of compressive sensing (CS), for exam-
ple, it is known that random matrices populated with
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independent and identically distributed (i.i.d.) Gaussian
or subgaussian entries will, with high probability, satisfy
a condition known as the Restricted Isometry Property
(RIP) [4]. The RIP guarantees that a matrix will approx-
imately preserve distances between all pairs of sparse
signals. These results have been previously extended
to show that an undersampled random orthoprojector
can also provide a stable embedding of signals living
along a low-dimensional manifold [5], [6]. Such stable
embeddings are valuable because they ensure that key
properties of the signal model are retained in the low-
dimensional measurement space, and this often leads to
guarantees on our ability to recover the original signal
or to perform processing in the measurement space. In
the particular case of a manifold signal model, a stable
embedding guarantees that manifold learning algorithms
(e.g., Isomap) can be run in the low-dimensional mea-
surement space nearly as accurately as (and much more
efficiently than) in the original signal space [7].

Recently the CS community has turned to investi-
gating structured measurement systems because unstruc-
tured systems (e.g., those corresponding to i.i.d. random
matrices or random orthoprojectors) may be impracti-
cal due to memory constraints, computational costs, or
prohibitions in the data acquisition architecture. Several
structured CS systems, such as random convolution
systems (described by partial Toeplitz [8] and circulant
matrices [9]) and deterministic matrix constructions [10],
have emerged that satisfy the RIP while requiring only
a small increase in the number of measurements beyond
what is needed for an unstructured random matrix. At
first glance, it may appear that these structured embed-
ding results are limited to sparsity-based signal models
and cannot be generalized to models such as manifolds.

In this paper, we show that by paying reasonable
factors in the number of measurements, all measurement
systems that satisfy the RIP for sparse signals can also
be used (in conjunction with a random sign sequence) to
obtain a stable embedding of a manifold. Therefore, the
advantages afforded by structured random matrices over
unstructured ones can be carried over to measurement
systems for manifold modeled signals. Our work rests



on a recent result [11] showing that when the columns
of an RIP matrix are modulated by a random sign
sequence, the matrix will obey a form of the Johnson-
Lindenstrauss (JL) lemma and can therefore provide
a stable embedding of an arbitrary finite point cloud.
Following similar arguments to [5], we extend the finite
JL result to all points living along a manifold. After
covering the necessary background in Section II, we state
our main result and its implications in Section III. Sec-
tion IV contains the supporting proofs, while Section V
concludes.

II. BACKGROUND

A. RIP and Stable Embeddings

We formally state the RIP in the following definition.

Definition II.1. A linear operator Φ : R
N → R

M

satisfies theRestricted Isometry Propertyof orderS and
conditioningδ (or RIP-(S, δ) in short) if for all x ∈ R

N

with at mostS nonzero entries, we have

(1 − δ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δ)‖x‖2
2.

For more general signal families, we make the follow-
ing definition.

Definition II.2. A linear operatorΦ̂ provides astable
embeddingof a subsetM ⊂ R

N with conditioningǫ if
for all pairs x1, x2 ∈ M, we have

(1 − ǫ) ≤ ‖Φ̂x1 − Φ̂x2‖2

‖x1 − x2‖2
≤ (1 + ǫ). (1)

Alternatively, one may define

U(M) =

{
x − y

‖x − y‖2
| x, y ∈ M, x 6= y

}
, (2)

which is the set of all directions (normalized difference
vectors) between pairs of points inM. ThenΦ̂ is a stable
embedding ofM with conditioningǫ if and only if

sup
x∈U(M)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ ≤ ǫ.

A well known interpretation of the RIP is as a stable
embedding of sparse vectors. In particular, an operator
satisfying RIP-(2S, δ) provides a stable embedding with
conditioningδ of the union of allS-sparse subspaces.

B. Manifold Characteristics

We present here some relevant terminology used for
discussing manifolds. For a Riemannian submanifold
M ⊂ R

N , we letdM(x, y) denote the geodesic distance
between two pointsx, y ∈ M; in other words,dM(x, y)
denotes the length of the shortest path betweenx andy

along on the manifold. Also, for a given pointx ∈ M,
we let Tanx denote the tangent space ofM at x. For a
manifold of dimensionK, Tanx can be thought of as a
K-dimensional linear subspace ofR

N .

We also describe two quantities that are used for
characterizing the properties of manifolds. The first is
the condition number,1τ , first described in [12] and later
used in [5]. The condition number provides a bound on
the worse case curvature of any unit speed geodesic path
along the manifold. More explicitly, for larger values of
τ , it is guaranteed that for two nearby pointsx, y ∈ M
the angle betweenTanx andTany will be small. A large
value for τ also ensures that two pointsx, y ∈ M with
large geodesic distancedM(x, y) cannot be arbitrarily
close in Euclidean distance‖x − y‖2. The interested
reader is referred to [12], [5] for an explicit definition of
the condition number and for formal descriptions of its
implications.

A second useful quantity concerns the covering regu-
larity of a manifold. Before describing this quantity, we
require the following definition.

Definition II.3. LetM be aK-dimensional Riemannian
submanifold ofRN . Thegeodesic covering numberofM
at resolutionT > 0, denoted byG(T ), is the smallest
number such that there exists a finite setA ⊂ M with
|A| = G(T ) such that for allx ∈ M,

min
a∈A

dM(x, a) ≤ T.

Any setA that satisfies the above condition is called a
geodesic covering set of resolutionT and in particular,
any such setA with |A| = G(T ) is called a minimal
geodesic covering set of resolutionT .

Now, the following definition of covering regularity
allows us to enumerate minimal geodesic covering sets
of a manifold. This will be useful in our analysis when
we approximate a manifold with its covering set.

Definition II.4. LetM be aK-dimensional Riemannian
submanifold ofRN having volumeV . We say thatM has
geodesic covering regularityR for resolutionsT ≤ T0

if

G(T ) ≤ RKV KK/2

TK

holds for all T ≤ T0.

As in [5], we shall neglect the minor dependence of
the geodesic covering regularityR on the maximum
resolution T0 and assume that the formula forG(T )
works for the range ofT considered in this paper.
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C. Related Work

The work in this paper is most closely related to [5]
and [6], which both showed that a random orthogonal
projection fromR

N into R
M will, with high probability,

provide a stable embedding of aK-dimensional mani-
fold M ⊂ R

N . In each of these works, the requisite
number of measurements scales only linearly in the
manifold dimensionK and logarithmically in certain
other parameters of the manifold. In [5] as well as in
this work, there is an additional logarithmic dependence
on the ambient dimensionN .

The proof of each of these results requires considera-
tion of a finite covering of points carefully chosen from
the manifold. Using the JL lemma [13], it then can be
argued that, with high probability, a random orthogonal
projection will provide a stable embedding of these
points. Following this, various geometric arguments al-
low one to conclude that the same orthogonal projection
will provide a (slightly weaker) stable embedding of the
entire manifoldM.

Formally, the JL lemma guarantees that for any finite
setE ⊂ R

N , a random orthogonal projector̂Φ ∈ R
M×N

will provide a stable embedding ofE with conditioning
ǫ with high probability if M = O(log(|E|) · ǫ−2).
Recent research has uncovered several other techniques
for constructingΦ̂ that also satisfy the JL lemma. In
particular, it has recently been shown [11] that any
M ×N matrix Φ that satisfies the RIP can also be used
in the JL lemma if its columns are randomized by a
length-N sequence of±1’s. To state this result formally,
we make the following definition.

Definition II.5. A diagonal Rademacher matrixis an
N × N diagonal matrix populated with a length-N
sequence of independent±1-Bernoulli random variables
on the main diagonal and with zeros elsewhere.

Multiplying any fixed matrix on the right by a diagonal
Rademacher matrix will therefore randomize its column
signs. The following theorem is a slightly modified
version of Theorem 3.1 from [11].

Theorem II.1. [11] Let 0 < ρ < 1 and 0 < ǫ′ < 1, and
let E be a finite set of points inRN . SupposeΦ ∈ R

M×N

satisfies RIP-(S, ǫ′

4 ) with

S ≥ 40 log

(
4|E|

ρ

)
,

and let Φ̂ = ΦD whereD is a diagonal Rademacher
matrix. Then with probability exceeding1 − ρ, Φ̂ will
provide a stable embedding ofE with conditioningǫ′.

It is this result that we leverage to expand the range

of compressive linear operators that can provide a stable
manifold embedding.

This work is also related to current research on extend-
ing the JL lemma to data sets that have low “intrinsic
dimension” [14], [15], [16]. In this line of research, the
open question is whether a finite data setB ∈ R

N

that has lowdoubling dimension1 D < log(|B|) can be
stably embedded into a space whose dimension scales
with D but not log(|B|) as in the JL lemma. Our work
can be considered a small step in this direction as it
allows consideration of the special case whereB is a
Riemannian submanifold.

III. M AIN RESULT

The main result of this paper is captured in the
following theorem.

Theorem III.1. Let M be a compactK-dimensional
Riemannian submanifold ofRN having condition num-
ber 1

τ , volumeV , and geodesic covering regularityR.
Fix a failure probability 0 < ρ < 1 and a conditioning
0 < ǫ < 1. SupposeΦ ∈ R

M×N satisfies RIP-(S, ǫ
64 )

with

S ≥ O

(
K log

(
RV N

τǫ

)
+ log

(
1

ρ

))
.

Let D be a diagonal Rademacher matrix, and define
Φ̂ = ΦD. Then with probability greater than1 − ρ, Φ̂
provides a stable embedding ofM with conditioningǫ.

The proof of this theorem can be found in Section IV.
The theorem essentially says that stable manifold em-
bedding can be obtained, with high probability, from any
RIP matrixΦ, provided that the RIP order is proportional
to the dimension of the manifold, and provided that the
RIP conditioning is sufficiently tight. Therefore, from
any of the known constructions of RIP matrices with a
number of rows proportional to the RIP order, we can
obtain a stable manifold embedding with a number of
measurements proportional to the manifold dimension.
We illustrate the implications of our result with a few
notable examples below.

In the corollaries that follow, we assume thatM is a
compactK-dimensional Riemannian submanifold ofR

N

having condition number1τ , volume V , and geodesic
covering regularityR. We also assume a fixed failure
probability 0 < ρ < 1 and conditioning0 < ǫ < 1.

Corollary III.1 (Subgaussian matrices). SupposeΦ ∈
R

M×N is a random matrix populated with i.i.d. subgaus-

1Thedoubling constantλB of a setB is the smallest numberλ ≥ 1
such that every ball inB can be covered by at mostλ balls of half its
radius. Thedoubling dimensionof B is D = log

2
(λB).
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sian random variables having zero mean and variance
1
M . If

M ≥ O
(

1
ǫ2

(
K log

(
RV N

τǫ

)
+ log

(
1
ρ

))
log

(
N
K

))

then with probability greater than1− (e−O(M) + ρ), Φ
provides a stable embedding ofM with conditioningǫ.

The proof of this corollary follows from the fact [1]
that subgaussian random matrices satisfy RIP-(S, δ) with
high probability wheneverM ≥ O

(
S
δ2 log

(
N
S

))
and the

fact that, for a diagonal Rademacher matrixD and i.i.d.
subgaussian matrixΦ, both Φ and ΦD have the same
distribution. This corollary formally proves a remark
made briefly in [5]—that stable manifold embeddings
can arise not only from random orthogonal matrices but
also from random subgaussian matrices.

Corollary III.2 (Partial circulant matrices). Suppose
Φ ∈ R

M×N is a partial circulant matrix with
Rademacher entries and arbitrarily selected rows (see
[9] for a detailed construction). If

M ≥ O

(
log 1

ρ

ǫ

(
K log

(
RV N

τǫ

)
+ log

(
1
ρ

)) 3

2

log
3

2 (N)

)

and D is a diagonal Rademacher matrix, then with
probability greater than1 − O(ρ), Φ̂ = ΦD is a stable
embedding ofM with conditioningǫ.

Here, the proof follows from the fact [9] that
partial circulant matrices satisfy RIP-(S, δ) with
probability greater than1 − ρ whenever M ≥
O

(
S3/2

δ log3/2(N) log
(

1
ρ

))
. This result makes possi-

ble one efficient implementation of a dimensionality
reduction scheme for manifold-modeled data. One would
first preprocess the ambient data inR

N by multiply-
ing the entries with a Rademacher sequence (that is
fixed beforehand). Then one would simply convolve the
processed data with a random sequence (made up of
Gaussian random variables or a separate Rademacher
sequence) and arbitrarily selectM samples of the con-
volution output. One can also imagine using other effi-
cient dimensionality reduction schemes that require only
M = O (K logp(N)) measurements for some integerp,
for example by takingΦ to be a subsampled Fourier
matrix [17].

Corollary III.3 (Deterministic binary matrices). Sup-
poseΦ ∈ {0, 1}M×N is a deterministic matrix following
the construction given in [10]. If

M ≥ O

(
1
ǫ2

(
K log

(
RV N

τǫ

)
+ log

(
1
ρ

))2

log2(N)

)

and D is a diagonal Rademacher matrix, then with
probability greater than1 − ρ, Φ̂ = ΦD is a stable
embedding ofM with conditioningǫ.

Again, this corollary follows from the fact [10]
that such matrices satisfy RIP-(S, δ) wheneverM ≥
O

(
S2

δ2 log2(N)
)

. Despite the additional number of re-
quired measurements, deterministic matrices are of in-
terest to the CS community because there currently do
not exist any tractable algorithms for verifying whether
a randomly constructed matrix satisfies the RIP.

IV. PROOF OFMAIN RESULT

Our proof of Theorem III.1 follows the basic structure
of the proof of Theorem 3.1 in [5]. We also borrow a
bit of terminology from [18], which helps delineate the
geometric and probabilistic aspects of the problem.

To be specific, in order to prove Theorem III.1, our
goal is to show thatsupx∈U(M)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ ≤ ǫ holds

with probability at least1−ρ. To reduce the complexity
of bounding the the random process

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ over

the infinite set of pointsU(M), we explain that it is in

some sense sufficient to consider
∣∣∣‖Φ̂x‖2 − 1

∣∣∣ only over

some finite samplingU(B) ⊂ U(M) which we refer
to as acovering set. Finally, we apply the RIP/JL result
from [11] to guarantee thatmaxx∈U(B)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ is

small with high probability.

A. Covering Set

The covering setU(B) ⊂ U(M) is defined in terms
of a set of pointsB ⊂ M, which we refer to asanchor
points. We define the setB according to the following
steps. LetT > 0, γ > 0 denote some variables whose
values will be fixed later in Lemma IV.1. Then letA be
any minimal geodesic covering set ofM with resolution
T . According to Definitions II.3 and II.4, this means that
for any pointx ∈ M, mina∈A dM(x, a) ≤ T and that

|A| = G(T ) ≤ RKV KK/2

TK
.

Next, for everya ∈ A, defineQ1(a) to be a minimal
γ-net of the unit sphere ofTana in the sense that for
everyu ∈ Tana with ‖u‖2 = 1, we have

min
q∈Q1(a)

‖u − q‖2 ≤ γ.

From standard volumetric estimates (see for example
[18]), this can be accomplished with

|Q1(a)| ≤
(

1 +
2

γ

)K

≤
(

3

γ

)K

.
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Note that since everyq ∈ Q1(a) belongs in the unit
sphere,‖q‖2 = 1. We also define a renormalized set

Q2(a) = {Tq : q ∈ Q1(a)} ,

so that‖q‖2 = T for all q ∈ Q2(a) and so that for every
u ∈ Tana such that‖u‖2 = T , we have

min
q∈Q2(a)

‖u − q‖2 ≤ Tγ.

Since Q2(a) is merely a renormalization ofQ1(a),
|Q2(a)| = |Q1(a)|. Finally, the set of anchor points of
M is defined as

B =
⋃

a∈A

{a} ∪ (a + Q2(a)),

wherea + Q2(a) is the set of tangents anchored at the
point a (instead of the origin).

B. Embedding Guarantee

Returning to the goal of our proof, we wish to show
that for some0 < ǫ < 1,

sup
x∈U(M)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ ≤ ǫ. (3)

The following lemma, which collects and modifies sev-
eral results from [5], relates the supremum of our random
process overU(M) to its maximum overU(B).

Lemma IV.1. Let M and ǫ be as in the statement of
Theorem III.1. SupposeΦ ∈ R

M×N satisfies RIP-(S, ǫ
4 )

for any S ≤ N and letΦ̂ = ΦD whereD is a diagonal
Rademacher matrix. LetB ⊂ M be a set of anchor
points as defined above, specifically whereT = C1τǫ2

N ,
γ = C2ǫ√

N
, C1 ≤ 1

308 , and C2 ≤ 1
3123 . Then

sup
x∈U(M)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ ≤ 16 max

x∈U(B)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ . (4)

Proof: See the Appendix for a proof sketch, which
closely follows the results in [5].

Therefore, if the assumptions of Lemma IV.1 are met,
then (3) will be attained if we can prove that

max
x∈U(B)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ ≤ ǫ

16
. (5)

To ensure that (5) is true with high probability, we apply
Theorem II.1 withE = U(B) and with conditioning
ǫ′ = ǫ

16 to conclude that, ifΦ satisfies RIP-(S, ǫ
64 ) with

S ≥ 40 log

(
4|U(B)|

ρ

)
, (6)

then with probability exceeding1 − ρ, Φ̂ will provide
a stable embedding ofU(B) with conditioning ǫ

16 . We

note that ifΦ satisfies RIP-(S, ǫ
64 ) as required here, it

also satisfies RIP-(S, ǫ
4 ) as required in Lemma IV.1.

For the cardinality of|U(B)|, we note that|U(B)| ≤
|B|2 and that

|B| ≤
∑

a∈A

(1 + |Q2(a)|) =
∑

a∈A

(1 + |Q1(a)|)

≤
(

RKV KK/2

TK

)(
3

γ

)K

≤
(

3 · 21/KRV 1/K
√

KN3/2

C1C2τ(ǫ′)3

)K

.

Therefore,

log

(
4|B|2

ρ

)
= 2 log(|B|) + log(4/ρ)

≤ 2K log

(
3 · 21/KRV 1/K

√
KN3/2

C1C2τ(ǫ′)3

)

+ log(4/ρ). (7)

Plugging (7) into (6), we conclude that ifΦ satisfies
the RIP of the orderS stated in Theorem III.1 with
conditioning ǫ

64 , then

P

{
sup

x∈U(M)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ > ǫ

}

≤ P

{
max

x∈U(B)

∣∣∣‖Φ̂x‖2 − 1
∣∣∣ >

ǫ

16

}
≤ ρ.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we showed that all measurement opera-
torsΦ satisfying the RIP can also be used (in conjunction
with a random sign sequence) to obtain a stable embed-
ding of a manifold. Moreover, we gave specific examples
of such operators, namely subgaussian random matrices,
random convolution matrices and deterministically con-
structed matrices, together with the requisite number of
measurements needed for each operator to ensure a stable
embedding of the manifold with high probability and for
a pre-determined conditioning. This result represents a
combination of two directions of recent interest in the
CS community: structured measurement matrices and the
development of structured signal models beyond sparsity.

While this result is encouraging, there are several areas
of improvement that would be valuable. For example, we
note that our Lemma IV.1 is an extension of Lemma 3 in
[18]. There, the author showed that we can replace the
unit sphere inR

N with a finite covering of the sphere
and we extend this idea to discretizing the set of all
directions of a manifoldU(M). However, compared to
[18], our lemma isnot operator agnostic in the sense that
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the operator̂Φ involved in the random process needs to
be derived from an operator satisfying the RIP. There
are advantages to being operator agnostic, including the
result that a simple concentration of measure inequality
for the operator̂Φ will suffice to ensure a stable embed-
ding of the manifold (instead of specifically requiring
Theorem II.1). Second, our result includes a logarithmic
dependency on the ambient dimensionN which we sus-
pect is suboptimal because [6] shows a stable manifold
embedding without this dependence. We are currently
pursuing ideas related to different constructions of the
covering set to try and tackle these issues.

Finally, another open question is whether the introduc-
tion of the random Rademacher sign sequence was ab-
solutely necessary to prove our desired result. Note that
this sign sequence introduces a notion of universality into
Φ that allows it to be used with manifold signal models.
However, just as the RIP can be shown without recourse
to universality (e.g., subsampled Fourier matrices mea-
suring only sparse signals but with degradation when
working with signals that are sparse in other bases), it
is perhaps possible that a less stringent condition can be
imposed onΦ and still achieve stable embeddings of a
class of manifolds.

APPENDIX

PROOFSKETCH FORLEMMA IV.1

The proof of this lemma essentially follows from
Lemmas 3.1, 3.2, 3.3 and Section 3.2.5 in [5]. In words,
we expressU(M) as the union of two sets:

Un
α (M) :=

{
x1 − x2

‖x1 − x2‖2
∈ U(M) | dM(x1, x2) ≤ α

}

Uf
α(M) :=

{
x1 − x2

‖x1 − x2‖2
∈ U(M) | dM(x1, x2) > α

}
.

The first of these sets contains normalized difference
vectors between all nearby points onM, while the
second contains normalized difference vectors between
all faraway points onM; the parameterα delineates
nearness from farness. Denoting the random process by
Z(x) :=

∣∣∣‖Φ̂x‖2 − 1
∣∣∣, we then see that

sup
x∈U(M)

Z(x) = max

{
sup

x∈Un
α (M)

Z(x), sup
x∈Uf

α(M)

Z(x)

}
.

From here, we first observe that the each of the vectors
in Un

α (M) can be approximated by some tangent vector
in some tangent plane to the manifold from the set⋃

a∈A(a+Q2(a)). This fact is the topic of Lemmas 3.1
and 3.2 in [5]. Second, we observe that each vector in
Uf

α(M) can be approximated by some pair of points

from the geodesic covering setA. This is the topic
of Lemma 3.3 in [5]. Additionally, we require theℓ2
norm of our operator̂Φ to be bounded, and an ade-
quate bound follows from the fact thatΦ satisfies RIP-
(S, ǫ

4 ). In particular, using elementary geometry we have:
‖Φ̂‖2 = ‖Φ‖2 ≤

(
1 + ǫ

4

)√
N . Finally, Section 3.2.5

in [5] determines the specific values forT and γ that
we require to define the covering setB.

Another way to view Lemma IV.1 is as follows. Sup-
pose we fixΦ with RIP conditioningδ and fix parameters
T and γ of the covering setB. Then these parameters
limit the possible range of values of the conditioning
parameterǫ that can be achieved for a stable embedding

of M. More specifically,ǫ ≥ max
{

4δ,
√

NT
C1τ ,

√
Nγ
C2

}
.
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