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ABSTRACT

Analyzing Dynamics and Stimulus Feature Dependence in the Information
Processing of Crayfish Sustaining Fibers

by

Christopher John Rozell

The sustaining fiber (SF) stage of the crayfish visual system converts analog stimulus repre-

sentations to spike train signals. A recent theory quantifies a system’s information processing ca-

pabilities and relates to statistical signal processing. To analyze SF responses to light stimuli, we

extend a wavelet-based algorithm for separating analog input signals and spike output waveforms

in composite intracellular recordings. We also present a time-varying RC circuit model to capture

nonstationary membrane noise spectral characteristics. In our SF anlysis, information transfer ra-

tios are generally on the order of10−4. The SF information processing dynamics show transient

peaks followed by decay to steady-state values. A simple theoretical spike generator is analyzed

analytically and shows general dynamic and steady-state properties similar to SFs. The informa-

tion transfer ratios increase with spike rate and dynamic properties are due to direct spike generator

dependence on input changes.
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Chapter 1

Introduction

In the crayfish visual pathway, the sustaining fibers (SFs) comprise the first stage where an ana-

log representation of light stimuli is converted to a spike train. Clearly, information from the light

stimulus is encoded in the SF output spike train, but what is not evident is how much information

present in the input signal is lost in the conversion process. Analyzing a system that takes signals

with different forms as input and output (e.g., analog input and point process output) is very difficult

using traditional signal processing methods. A recent theory of information processing quantifies

how well changes in a system’s input are reflected in the system’s output. This theory works re-

gardless of the form of the input and output signals, and relates a system’s information processing

capabilities to statistical signal processing. Although this theoretical framework can analyze a gen-

eral system, many practical problems arise in analyzing a real-world system. The present work

addresses many of these practical problems in the context of analyzing the SF stage of the crayfish

visual pathway.

Systems may selectively “filter” information: some types of informational changes at the input

will be reflected in the output with more fidelity than others. One question considered here is

whether SF information processing varies with stimulus feature. We consider whether different

stimulus features (e.g., light intensity, spatial frequency, motion direction) are represented in the SF

output spike train with comparable fidelity. When sudden-onset light stimuli are used, SFs have

transient and steady-state segments in both the SF input and output responses. We also consider the

dynamics of SF information processing capabilities by analyzing the sustaining fibers’ time-varying

encoding efficiency.
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Chapter 2 provides introductions to the crayfish visual pathway (including the experiments per-

formed to collect SF data) and the theory of information processing we employ. A number of

technical details need consideration before information-processing based data analysis can be per-

formed. Chapter 3 describes the preliminary steps taken to prepare the data for analysis, including

our extension to a wavelet-based technique for separating SF input and output signals from a com-

posite recording. Chapter 4 presents the details of our information processing analysis methods,

including development of a model for SF input response characteristics. The resulting SF analysis

is presented in Chapter 5. Conclusions are drawn and future work detailed in Chapter 6.
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Chapter 2

Background

2.1 Neural Communication

Sensorineural systems gather information about the outside world and communicate that infor-

mation to higher centers of the brain. These systems contain both transducers to convert stimulus

energy into electrochemical signals, and neurons to communicate and process those signals. Neural

morphology varies throughout a biological system, but typical neurons have three distinct compo-

nents: an input region, an integrative region, and an output path, seen in figure 2.1. Thedendritic

Figure 2.1 Basic anatomy of a general neuron (adapted from [16]). Typical neurons have three distinct
regions: an input region generally consisting of dendrites, an integration region made up of the cell body and
the output path composed of the axon. The axon terminates in a presynaptic terminal that forms a synapse
with an adjacent neuron.

treemakes up most of a neuron’s input region. The cell body, orsomacontains the biological com-

ponents common to all cells, housing the machinery necessary to maintain cellular function. The
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soma also typically serves as the neuron’s integrating region, combining inputs initiated in distinct

portions of the dendritic tree. Theaxon is the major extension projecting away from the soma to

another neuron. Axons carry neural output signals away from the soma and end in asynapse, mak-

ing a connection to another neuron’s input region. The synapse consists of thepresynaptic terminal

(a specialized area on the sending neuron) and apostsynaptic terminal(a specialized area on the

receiving neuron) [16, 20]. A typical neuron has many dendrites but only one axon.

Neurons represent signals by an electrical potential across the cell membrane. In most neurons,

input analog potentials in the soma drive the stochastic production ofaction potentials, or spikes

in membrane electrical potential. Spike trains actively propagate down the axon as a neural output

signal. Spike waveforms are generally stereotyped, leaving only event timing as the significant

feature. The action potential rising phase is quite fast (∼ 1 ms), and the falling phase is slightly

slower. The whole event typically lasts only a few milliseconds (∼ 10 ms in crustaceans,∼ 1–2

ms in mammals). Spike trains are frequently modeled mathematically aspoint processes, stochastic

processes completely defined by event timing [11]. In neurons only needing to communicate over

very short distances, graded (analog) potentials may be passed directly to adjacent neurons without

generating action potentials.

When action potentials (or graded potentials in non-spiking neurons) reach the presynaptic ter-

minal, a chemical neurotransmitter is released into the extracellular space. The transmitter pres-

ence at the adjacent neuron’s postsynaptic terminal generates an excitatory postsynaptic potential

(EPSP). The resulting current travels down the electrical gradient from the dendrite to the soma and

is integrated with inputs from other dendrites [16, 20].

Neural communication is difficult to analyze in part because the system adapts based on what

has previously occurred in each neuron. For instance, when the EPSP in a neuron’s integrative



5

region (also called the spike initiating zone) crosses a threshold, an action potential is produced.

This threshold varies, depending on recent activity history. For example, after spike generation

the system goes through both an absolute and a relative refractory period. During the absolute

refractory period, the threshold is very high, making it virtually impossible to generate another

spike. Following the absolute refractory period is a relative refractory period when the threshold is

elevated, allowing spike generation but only with stronger than normal input [20]. When EPSPs are

present (or absent) for an extended period of time, the threshold can exhibit extended adaptations.

2.2 The Crayfish Visual Pathway

The crayfish optic lobe presents an interesting system, useful for studying information represen-

tation in a sensorineural system. The retina of the crayfish compound eye has groups of photorecep-

tors projecting down the visual pathway in a 1:1 fashion to a column of interneurons in the medulla.

These retinotopically organized interneurons synapse on sustaining fiber (SF) dendrites [18]. The

crayfish visual pathway up to and including a SF is depicted in figure 2.2. The SFs are the sys-

tem analyzed in this report. In crayfish, fourteen distinct SFs have been identified. The retinotopic

organization of the medullary interneurons together with the sustaining fibers’ unique dendritic ar-

chitectures result in each SF having its own distinct, well-defined receptive field. The SFs have

overlapping receptive fields and the ensemble covers the entire panoramic visual field [18, 27].

SFs are spiking neurons whose projections include the optomotor neurons responsible for eye-

stalk reflex movement. The photoreceptors and interneurons comprising the pre-sustaining fiber

optic pathway have been shown to be non-spiking [26], and SFs have been shown to have little

interaction with each other [19]. Therefore, SF input EPSPs closely resemble graded and delayed

versions of summed photoreceptor activity over a segment of the visual field. The SFs are critical
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Figure 2.2 Shown is a diagram depicting the crayfish visual pathway up to and including a SF. Light
is transduced by the retinal photoreceptors. Each group of photoreceptors in the compound eye project in
a 1:1 fashion to a column of medullary interneurons. The medullary interneurons synapse on SFs, which
produce spike train outputs. The pre-SF pathway is non-spiking, so the SF receive graded and delayed
signals representing summed photoreceptor activity over a receptive field.

from an information processing perspective because they are the first stage where an analog signal

representing an outside stimulus is converted to a discrete spike train. From a signal processing

point of view, the SFs represent a “front-end” for later information processing in higher centers of

the brain.

2.3 Experimental Setup

In the data analyzed here, an intracellular SF recording was made with a microelectrode placed

near the spike initiating zone. More detail about preparing the resulting data records for analysis is

given in Chapter 3. The preparation is placed in a holding apparatus and eye position is secured.

The fixed preparation is surrounded by a projection surface for light stimuli. Stimuli can be moved

through the visual field with a specified direction and speed while recording from the SF. Data

collection experimental methods are fully described in [17–19, 26].
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Both the input EPSPs and the output spike trains are known to exhibit transient and steady-state

behavior proportional to stimulus intensity [18, 27]. We are interested in examining and comparing

the information transfer efficiency during these different response segments and sudden onset stim-

uli are used to elicit strong transient behavior. During a sudden onset experiment, the preparation

is dark-adapted and a light stimulus with a specific intensity is suddenly presented over the SF re-

ceptive field. A small set of intensity values are pre-selected and several trials performed with each

stimulus.

We would also like to explore how neural coding efficiency varies with stimulus feature. Sine-

wave grating stimuli were also used to contrast the sudden-onset stimuli. An example sine-wave

grating is shown in figure 2.3. Two-dimensional sine-wave gratings are specified by their con-

Figure 2.3 An example sine-wave grating. This stimuli is moved through the visual field at a particular
orientation. The sine-wave grating is specified by the spatial frequency, the contrast, the orientation and the
temporal frequency of the movement.

trast, spatial frequency (measured in gratings/degree), motion direction, and the speed (temporal

frequency) of one cycle. The contrast parameter in this type of stimuli is given as

Contrast =
Imax − Imin

Imax + Imin
,

whereImax andImin are the maximum and minimum intensity values. Sine-wave gratings present a

slowly increasing and decreasing light intensity to the SF visual field, contrasting the sudden onset

stimuli described above.
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2.4 A Theory of Information Processing

As mentioned previously, SFs have analog EPSP input signals and discrete (point process) spike

train outputs. This disparity precludes application of many standard signal processing system eval-

uation techniques. For example, a traditional transfer function cannot be constructed for such a

system, and a cross-correlation between an analog input and point-process output is difficult. To

characterize a sustaining fiber’s coding efficiency it is necessary to abstract from the standardsignal

processing framework (centered around signal form), and consider a system’sinformationprocess-

ing function. A system processing signals also processes information content, letting some infor-

mation components pass through while others components are filtered out. A theory has recently

been introduced that quantifies a system’s information processing capabilities regardless of the form

of its input and output signals [12, 13, 24]. This information processing theory is the basis of the

crayfish SF analysis presented here, and is summarized.

In this information processing framework, information (such as a light stimulus parameter) is

conveyed by a stochastic signal with a probability law that depends on the exact information value.

In the following description, stimulus parameters are expressed by the vectorα and a stochastic

signal representing that stimulus is given byXα. HereXα is distributed according topα, a prob-

ability function that depends onα. A system takes as input a stochastic signalXα and produce

a stochastic signalYα (governed by a different probability lawqα) as output. In the case of the

SFs,Xα would be an EPSP input representing a stimulus with parameterα, andYα would be the

corresponding spike train output. We would like to compare the amount of information aboutα that

can be extracted from the input and output signals.

A measure such as entropy cannot be used to quantify the information transfer capabilities of a

system because it cannot quantify the amount of information a signal containswith regard to a spe-
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Figure 2.4 Crayfish SFs take analog EPSPs responding to a stimulus conditionα as input and produce
spike responses representingα as output. An information processing analysis compares the performance
of an optimal classifier operating on the input signals(Xα0 ,Xα1) to the performance of another optimal
classifier operating on the output signals(Yα0 ,Yα1).

cific stimulus feature. The input signalXα may contain information about a stimulus feature other

thanα, and that extraneous information may actually act as noise when trying to make a decision

aboutα. As a specific example, when trying to determine the light intensity from a sustaining fiber’s

output, information about the stimulus spatial frequency would be nuisance. Because information

is “in the eye of the beholder” here, it is necessary to consider controlledchangesin the value ofα

and observe thechangesinXα andYα.

Given two different values of stimulus parameterα, we desire a distance measured(·, ·)

that quantifies the stimulus-induced change in the input signaldX(α1,α0) and the output signal

dY (α1,α0). Ali-Silvey defined a class of distance measures [1] that satisfy the data processing

inequality [4], which states that

dX(α1,α0) ≥ dY (α1,α0). (2.1)

In other words, while systems can convert a signal from one form to another (which may be more

desirable for a given application), no amount of processing can increase the signal’s fidelity in

representingα. The data processing inequality is satisfied by all Ali-Silvey distances (by definition)

and several other information theoretic distances not in the Ali-Silvey class.

We use one particular distance in the Ali-Silvey class known as theKullback-Leibler distance
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(also called relative entropy) [4],

KLX(α1,α0) =
∫
pα1(x) log2

pα1(x)
pα0(x)

dx. (2.2)

Again,pα is the probability law governingXα.

It should be noted here that the term “distance” is somewhat misleading. Though the KL dis-

tance is always non-negative, it is not a true distance metric because it is not symmetric in general.

However, this quantity is important because it obeys the data processing inequality given in (2.1),

and because it has significant relations to statistical signal processing. In a Neyman-Pearson binary

hypothesis testing problem, Stein’s Lemma [4] tells us that the probability of a false alarm error

(under a constraint on the probability of a miss error) decays exponentially with a rate equal to the

KL distance between the probability functions [14]:

Pf ∼ 2−KLX(α1,α0).

The asymmetry of the KL distance can be difficult to deal with, and it is unnatural in the present

study to define a “reference” stimulusα0. For those reasons, we often use a symmetric extension

to the KL distance known as theresistor-averaged KL distance, given by:

RKLX(α1,α0) =
KLX(α0,α1)KLX(α1,α0)
KLX(α0,α1) +KLX(α1,α0)

. (2.4)

The resistor averaged KL distance also satisfies the data processing inequality (2.1) and is often a

reasonable approximation to twice the Chernoff distance [15]. The Chernoff distance is important

because it plays a similar role in defining the asymptotic decay rate for the total probability of error
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for optimal classifiers [4],

Pe ∼ 2−CHX(α0,α1).

The Chernoff distance is not used here because it is computationally demanding, involving the

solution of an optimization problem. Unless stated otherwise, the resistor-averaged KL is used as

the default distance measure in the following analysis.

Given a change in stimulus parameterα, the ratio of the distance at the output to the distance

at the input quantifies the amount of information aboutα that was suppressed (or filtered) by the

system. This ratio is termed the information transfer ratio, defined by

γX,Y (α0,α1) =
RKLY (α0,α1)
RKLX(α0,α1)

. (2.6)

A critical property of the information transfer ratio is its invariance to signal form at the input and

output. The signals are characterized only through their respective probability functions underα0

andα1, and only the distances between the input and output probability laws under each stimulus

condition are ever used. The input and output signals are never directly compared and can therefore

have a different structure (e.g., analog inputs and point process outputs). Also, it has been shown

that many properties of the information transfer ratio do not depend on the choice ofd(·, ·), as long

as it is an Ali-Silvey distance [24].

From the data processing inequality given in (2.1) it follows that the information transfer ratio

is always a quantity between zero and one. A value of one means there was perfect information

transfer of the change inα from input to output, and a value of zero means all information aboutα

was suppressed. The value of the information transfer ratio itself can be interpreted as the perfor-

mance difference (i.e., the multiplicative difference in asymptotic error decay rates) between opti-
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mal classifiers operating on the input and output signals. A complete description of this information

processing theory (including basic system properties) can be found in [24].
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Chapter 3

Data Preparation

3.1 Intracellular Sustaining Fiber Recordings

The SF dendritic tree is large enough to allow intracellular recording with a microelectrode near

the spike initiating zone. Intracellular recording yields a simultaneous composite record of both the

EPSP input signal and spike train output. Recordings of the EPSP alone could be made using a

spike inhibiting agent (such as TTX [20]) and extracellular recording could isolate the spike train

output, but intracellular recording allows capturing both simultaneously.

Performing an information processing analysis of a SF for a given stimulus feature requires

characterizing the probability laws governing both the input and output signals representing the

stimuli. Because only a composite recording is available, we must separate the original composite

recording into input and output components. The spike waveforms are stereotyped and modeled as

a point process, so a record of the spike times entirely preserves the SF output. However, the EPSPs

are analog signals and faithful detail preservation is desired.

Examining a sample response in figure 3.1, three distinct components are visible: action poten-

tial waveforms, a slowly-varying analog signal, and broadband membrane noise. The input EPSP

consists of both the slowly-varying signal and broadband membrane noise. The spikes are relatively

discontinuous in time and represent a wide-band signal in the frequency domain. Because the spike

signal shares significant frequency bandwidth with the broadband membrane noise, a linear filter

cannot adequately separate a spike train and an EPSP (shown clearly in [13, figure 1]).
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Figure 3.1 An example EPSP response is shown to a sudden-onset stimulus. Three different components
are distinctly visible: spike waveforms, a slowly-varying signal, and broadband membrane noise. The mem-
brane noise and the slowly varying signal are both part of the EPSP input, and spike waveforms constitute
the SF output signal.

3.2 Extension to Wavelet-Based Spike Separation Algorithm

A spike separation scheme based on wavelet denoising was presented in [13]. Traditional

wavelet denoising is a nonlinear technique used to separate signals from broadband noise [2]. In a

typical wavelet denoising application, a wavelet transform of the signal and noise combination is

computed. The signal structure shows up as dominating wavelet coefficients at some scales of the

decomposition, while noise power is distributed among all coefficients and scales. By eliminating

coefficients below a threshold and computing the inverse transform, broadband noise is removed

from the signal.

In the transform of a composite intracellular recording, spikes are discontinuities that persist as

strong coefficients across scale but are localized in time. The wavelet decomposition scaling coef-

ficients represent the lowest frequency content of the signal. The slowly-varying EPSP component

is primarily low-frequency energy and it has been assumed that the EPSP is completely represented

by the scaling coefficients. A threshold can be set (depending on the signal-to-noise ratio of the

recording) that allows a spike signal to be extracted from a recording. The detail coefficients below

threshold and all scaling coefficients are set to zero, eliminating energy from the slowly-varying

EPSP and broadband noise. The inverse transform is computed with the remaining coefficients rep-
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Figure 3.2 Shown are a segment of coefficients from a discrete wavelet transform of an example SF
intracellular recording. Only the three highest scales (finest detail coefficients) are shown, representing the
highest frequency energy. The vertical dashed lines separate the three scales of coefficients. The action
potentials are sharp discontinuities in time which persists strongly across each scale of coefficients. The
lower energy, broadband membrane noise is also visible at all scales of coefficients, but is not localized in
time. The slowly-varying EPSP signal has energy located primarily in the scaling coefficients, which are
not shown here. The horizontal dashed line is the threshold (set based on the signal SNR) that can be used
to separate the coefficients representing energy from action potentials from coefficients representing energy
from the broadband membrane noise.

resenting the spike signal. This denoising procedure has zero phase delay, so an extracted spike

signal can be subtracted from the original recording to yield an estimated EPSP signal.

This method clearly extracts spike waveforms from the composite signal, and action potential

event times are easily found by simple thresholding. However, little consideration has been given to

faithfully preserving EPSP waveform detail. In particular, depending on the slowly-varying EPSP

component, separated EPSPs can have significant deviations from the original recording even in

areas where no spike events occurred. Some distortion in the separated EPSP could be tolerated in

locations where spikes were removed from the original recording, but distortion in other areas is an

unacceptable deviation from the true EPSP.

We developed an extension of this spike-separation algorithm that improves preservation of

the EPSP signals. Our algorithm exactly preserves EPSP structure in areas where no spike events

occurred. The spike separation method described above is based on the assumption that energy from

the slowly-varying component of the EPSP is either completely contained in the scaling coefficients
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of the wavelet transform, or contained in detail coefficients at a higher scale but below threshold.

In a large set of intracellular recordings from crayfish SFs, this assumption was frequently violated.

When significant energy from the slowly-varying potential is located in the detail coefficients, it is

impossible to distinguish from energy contributed by spike events. EPSP energy above threshold

in detail coefficients causes portions of the EPSP signal to be erroneously included in the separated

spike signal. We need a method for extracting spike events that not only match a scale and energy

profile, but are also localized in time. If spike event times are identified, the denoising procedure

described above could be applied only where those events are known to occur. Denoising localized

in time ensures the separated EPSPs exactly preserve the recorded signals in areas where no spikes

occur.

Action potential waveforms are sharp increases in membrane potential, followed immediately

by a sharp decrease. This signal’s derivative would show a large positive slope on the rising phase of

the spike and a large negative slope on the falling phase. Because of the discontinuity between the

rising and falling phases, the second derivative of this signal has very negative values where spike

peaks occur. By thresholding the signal’s approximated second derivative, spike peaks are identified

and precisely located. The approximated second derivative from an example SF recording is shown

in figure 3.3.

A spike-removed signal is generated in the same spirit as the method outlined earlier. The

wavelet transform of the entire original recording is computed and all detail coefficients above a

threshold are eliminated. The inverse transform yields a signal (called the “smoothed” EPSP ap-

proximation here) with spike events completely removed and EPSP structure possibly partially re-

moved. A separated EPSP is generated by merging the original recording with the smoothed EPSP

approximation. Using identified spike peak locations, points can be found on either side of a spike
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Figure 3.3 Shown is the approximated second derivative for an example SF intracellular recording.
Action potentials are sharp discontinuities in time, which will produce large negative deflections in the second
derivative of the signal. A threshold can be easily applied to determine spike locations for use in the spike
separation algorithm.
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Figure 3.4 Shown are an example SF recording (thin line) and the smoothed EPSP approximation (thick
line) for this signal. The smoothed approximation was found by calculating the discrete wavelet transform
of the recording, thresholding to remove coefficients representing spike energy and computing the inverse
transform. The smoothed EPSP approximation removes the spike waveforms, but also can remove some of
the EPSP signal when the slowly-varying signal has energy in the detail wavelet coefficients.

event where the original recording intersects the smoothed approximation. These points are used to

define critical areas surrounding spike events. We separated the EPSP by using the original record-

ing in areas away from spike events and using the smoothed approximation in these critical areas.

Using intersect points as the merge boundaries minimizes discontinuity in the resulting separated

EPSP signal. Because this operation is also zero-phase, the final separated spike signal is the dif-

ference of the separated EPSP signal and the original recording. The example SF recording and the

resulting separated EPSP and spike waveforms are shown in figure 3.5.

Although this algorithm generates a separated EPSP that exactly preserves the original recording

in areas away from spike events, distortion is clearly introduced where spikes have been removed.
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Figure 3.5 Shown here are example results from the wavelet-based spike separation algorithm presented
here. At the top of the figure, an example SF intracellular recording is shown as the thin line, and the
separated EPSP signal is overlaid as the bold line. The separated EPSP signal is found by merging the
smoothed EPSP approximation into the original recording in areas surrounding spike events. At the bottom
of the figure, the resulting spike waveforms are shown with bold ‘x’ symbols indicating the event times. Only
the bold elements in the figure are used for calculating the KL distance for the input and output responses.

The slowly-varying EPSP is sufficiently preserved, but little confidence can be given to the noise

power or spectral character in these areas.

3.3 Electrical Noise (Hum) Removal

An information processing analysis using EPSPs must incorporate the membrane noise charac-

teristics. Because the data recordings are made with electronic equipment, electrical noise (particu-

larly 60 “hum” and it’s odd harmonics) can be introduced. We would like to ignore any measurement

noise components unrelated to actual membrane activity. After a series of stimulus repetitions we

separate the spike waveforms and EPSPs using the algorithm given in section 3.2, and calculate the

mean EPSP signal by averaging the set of EPSP recordings. Before any further analysis is done, we

attempt to remove hum that may be present in this mean EPSP signal.

Before the stimulus is applied, EPSP recordings contain only noise and no significant signal

activity. A pre-stimulus segment ofmembranenoise is denoted by the vectorCα ∼ N(0,Kα).

The use of a Gaussian model and calculation of the covariance matrixKα is discussed in Chapter

4. Hum components will be denoted as sampled sinusoidal functions with known frequency but

unknown phase,s(l, φ) = sin(2π60l/Fs + φ), whereFs is the sampling rate. The recorded signal
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vectorRα is the sum of the membrane noise and hum vectors:

Rα = Cα +As(φ) (3.1)

Rα ∼ N(As(φ),Kα).

The probability function for this signal (conditioned on the unknown parameters) is

PRα(r|A,φ) =
1√
|2πKα|

exp
−||r −As(φ)||2

K−1
α

2
. (3.2)

The maximum-likelihood estimates of̂A andφ̂ are found when equation (3.2) is maximized, which

is the same as maximizing:

max
A,φ

(
−||r −As(φ)||2

K−1
α

)
= max

A,φ

(
2A〈r, s(φ)〉K−1

α
− ||r||2

K−1
α
−A2||s(φ)||2

K−1
α

)
. (3.3)

The parameterφ only has a significant effect on the term〈r, s〉K−1
α

in equation (3.3). The maximum

cross-correlation between the recording vectorRα ands(0) (with a K−1
α kernel inner product)

yields the maximum likelihood delay,̂φ. Equation (3.3) can also be differentiated with respect toA

and set to zero to find the maximum likelihood amplitude:

Â =
〈r, s(φ̂)〉K−1

α

||s(φ̂)||2
K−1
α

. (3.4)

The maximum likelihood estimateŝA and φ̂ are used to remove hum from the entire mean

EPSP recording vector. After removing 60 Hz hum, we also attempt to remove 180 Hz and 300 Hz

harmonics in the same manner. There is significant 180 Hz and 300 Hz hum energy in some data



20

records, but no higher harmonics were significantly present. The power spectral density (PSD) of

one example mean EPSP segment is shown in the left panel of figure 3.6. The PSD of the same

signal with the hum removed is shown in the right panel. The hum removal algorithm removes most

of noticeable electrical noise and does not cause damage to the neighboring spectrum the way a

simple “notch filter” would.
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Figure 3.6 Shown in the left panel is the power spectral density (PSD) of a mean EPSP segment. Peaks
of energy at 60 Hz and its odd harmonics are evident, indicating the presence of electrical “hum”. The right
panel shows the PSD of the signal after the hum removal algorithm has been applied. Most of the hum has
been removed, and the neighboring spectrum is unchanged.
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Chapter 4

Calculating Kullback-Leibler Distances

4.1 Estimating Spike KL Distances

As described in section 2.1, SFs have spike train outputs typically modeled as point processes.

An information processing analysis requires KL distance calculations between spike train probabil-

ity laws under two different stimulus conditions. The most straight-forward KL distance estimate

between true probability laws is the KL distance between probability law estimates. The spike train

probability law does not have a known analytic form, so a non-parametric estimate is made. John-

son et al., outline a method in [12] for estimating KL distances using spike responses. During the

experiment the stimulus is periodically repeated, yielding responses that are realizations of a cyclo-

stationary [25] random process. Because the responses are stationary with a periodic offset, a type

estimate can be formed for the probability of events occurring in a time bin. The type estimate of

event probabilities in each bin is a post-stimulus time (PST) histogram [11] for a collection of spike

responses to a periodically repeated stimulus.

In our notation, the vector̂qα0 = (q̂α0(1), q̂α0(2), . . . , q̂α0(N)) would represent type estimates

for each of theN response bins under stimulus conditionα0. If these bins are independent, the

joint probability function is the product of all individual bin probabilities. With independent bins,

the total KL distance between response vectors is the sum of KL distances at each bin:

dY (α0,α1) =
N∑
n=1

dY (n)(α0,α1). (4.1)

Spike response KL distance estimation presents a few notable issues. First, with a small number
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of responses, a bin in one type estimate can have no events while the same bin in the other type

estimate (for the second stimulus condition) has at least one event. Non-overlapping support in

a type estimate can be an artifact of the small dataset size and thus not representative of spike

train probability laws. A support difference corresponds to an infinite KL distance, which is an

undesirable artifact from estimation with small datasets. We correct for these artifacts by using

a Krichevsky-Trofimov (K-T) modified type estimate [12]. The K-T modification adds1
2 to each

bin before normalization, yielding an asymptotically unbiased estimate with guaranteed support in

every bin.

Another complication arises choosing the type estimate bin width. Larger bins will reduce time

resolution in the type estimate. Smaller bins create more bins to fill with the same amount of data,

resulting in less accurate estimates. The probability of events occurring in a bin changes with bin

width, and therefore the KLin each binalso depends on bin width. However, the KL distance for

the entire response vector (found by summing individual bin KLs) doesnotdepend on the bin width

[12] as the binwidth gets smaller (under Poisson assumptions). To reduce the appearance of bin-

width affects in this analysis, we generally plot KLs cumulatively with increasing time rather than

individual bin KLs.

The KL calculation procedure described above assumes that bins are statistically independent.

An extension to this procedure includes Markov dependence between the bins [7, 12]. Any increase

in the Markov order fromD = 0 (statistically independent bins) creates an exponential increase

in the number of bins that need filling to create a probability function type estimate. The datasets

available are not large enough for reliable estimates when Markov dependence is included(D > 0),

so the independent bin assumption(D = 0) is necessarily used.

Spike response KL distances estimated using types can be considerably biased. Gruner and
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Johnson [7, 12] employed the bootstrap procedure [5, 10] to estimate and remove bias from the

spike response KL estimates. The bootstrap is a statistical resampling technique that estimates bias

introduced by sampling from a population (i.e., collecting data). This procedure has worked well in

simulation, producing more accurate estimates of known KL distances. The bootstrap also provides

a means for calculating error bar around the spike KL estimates. Complete descriptions of spike

train KL estimation are given in [7, 12].

4.2 Estimating EPSP KL Distances

The other component of our information processing analysis is a KL distance estimate between

probability laws governing the analog EPSP inputs. Estimating a non-parametric probability func-

tion for analog signals requires a vast amount of data. Given the present constraints, we developed a

parametric model describing EPSP signal characteristics. The compound EPSP input signal (mea-

sured near the integration region of the SF) is a sum of many individual EPSP events initiated in

the dendritic tree. Because individual EPSPs are sudden onset signals (generated by presynaptic

action potentials) with a relatively quick decay, the sum can be conceptualized as “shot noise” [22].

Asymptotically, the sum of many such individual EPSP “shots” is a Gaussian random process. Us-

ing statistical goodness-of-fit tests [3] we have found a Gaussian model is not an unrealistic fit for

the EPSP data, and that model will be used here.

If two EPSP signals are characterized byXα0 ∼ N(mα0 ,Kα0) andXα1 ∼ N(mα1 ,Kα1),

the KL distance at the input is given by

KLX(α0,α1) =
1
2

(
ln
(
|Kα1 |
|Kα0 |

)
−N + tr

[
K−1
α1
Kα0

]
+ (mα1 −mα0)tK−1

α1
(mα1 −mα0)

)
,

(4.2)
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where|Kα| is the determinant ofKα and tr[·] is the trace of a matrix. IfKα0 = Kα1 , the first

three terms of equation (4.2) are zero. IfKα0 6= Kα1 the first three terms of equation (4.2) are

always non-negative (KL distance non-negativity and substitutingmα0 = mα1 into equation (4.2)

yields this result). In the present analysis, only recordings from the same preparation and neural unit

will be compared. Because the noise characteristics depend on individual SF membrane properties,

correlation functions will be very similar for recordings from the same preparation and neural unit.

Similar correlation structures and large SNRs make the first three terms of equation (4.2) insignifi-

cant (∼ .1% of the total) compared to the final estimated KL distance. To reduce complexity in the

KL estimate, only the most significant final term of equation (4.2) will be used as a lower bound

(and reasonable estimate) of the true KL distance:

KLX(α0,α1) ≈
(mα1 −mα0)tK−1

α1
(mα1 −mα0)

2
. (4.3)

Assuming a Gaussian random vector as the EPSP data model, two quantities are needed to

estimate an input KL distance estimate for two stimuli: the mean vectors (mα0 andmα1) and co-

variance matrices (Kα0 andKα1). As mentioned previously, each stimulus is repeated several times

and SF recordings made. For each data record we separate EPSP and spike responses by applying

the spike-separation procedure described in section 3.2. Because the responses are cyclostationary,

we estimate the mean vectormα for a stimulus condition by averaging EPSP responses.

Depending on the fundamental membrane noise structure, several techniques could be used

to estimate the covariance matrixKα for a stimulus condition. Direct estimation of the sample

covariance matrix is not desirable in this case because of the small dataset size (compared to the

size ofKα). Spectral estimation techniques such as auto-regressive (AR) analysis (also called
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linear predictive coding) [23] could be used to estimate the membrane noise correlation structure.

Spectral estimation techniques are very sensitive and may require long segments of contiguous data,

especially if that noise has a very “low-pass” character. Any additive noise from a source other than

the neural membrane would significantly affect the results. The sensitivity of AR analysis presents

a significant problem because “extraneous noise” can be introduced in both the measurement and

spike separation stages. Because the measurements are made with electrical equipment, electrical

noise (particularly 60 Hz “hum” and its odd harmonics) can be present. We attempt to remove hum

from the mean EPSP signals using a technique described in section 3.3. No technique for hum

removal is perfect however, and any remaining hum (or hum removal artifacts) can have significant

negative impact on spectral estimation.

Even assuming that electrical hum could be adequately removed, noise introduced during spike

separation is much more detrimental. The technique we use for separating EPSP and spike re-

sponses, described in section 3.2, produces noticeable artifacts where spikes were removed from

the original recording. SFs discharge spontaneously in the absence of a stimulus, making it vir-

tually impossible to find sufficiently long data records without artifacts from spike removal. Even

if the resting membrane noise characteristics could be estimated, the noise characteristics are not

guaranteed to be the same in active areas with significant EPSP and spike activity. Direct estimation

of membrane noise correlation properties using established spectral estimation techniques is not

possible given present constraints. To estimate EPSP KLs, we develop a model for membrane noise

correlation based on membrane and synapse physiology.
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4.2.1 Neurophysiologic Model

The primary neural structures contributing to EPSP formation are functionally analogous to

electrical components, leading naturally to neurophysiologic circuit models. Neural membrane

electrical potential is created by an excess of charged ions (of equal and opposite charge) on op-

posite sides of the cell membrane. The membrane is a lipid, bilayer structure that is impermeable to

ions, keeping extracellular and intracellular ions separated despite the mutual attraction. The mem-

brane separates and stores ionic charge in the same way capacitors function with free electrons.

Selective ion channels are embedded in the cell membrane, allowing passive ion movement. An

ion channel ensemble has a conductance that may depend on the presence of electrical potential

(voltage-gated channels) or specific chemical agents (ligand-gated channels). The resting mem-

brane has a characteristic net conductance (Gmem). An EPSP is created when an adjacent neuron

releases a neurotransmitter that causes postsynaptic ligand-gated ion channels to open, increasing

the synaptic conductance (Gsyn). The net membrane conductance is the sum of the synaptic and

resting membrane conductances,G = Gsyn + Gmem. The ion channel ensembles are modeled as

a membrane resistor and a synaptic variable resistor in parallel with a capacitor. Conductance in-

creases responsible for EPSP generation have been measured in crayfish SFs by Waldrop and Glantz

[26]. Resting membrane conductances and membrane capacitances are provided from a biophysi-

cal model developed by Glantz [6]. The amount of ionic current into the cell depends on both the

conductance and electrochemical potential specific to that ion. The net driving potential across the

cell membrane is modeled as a voltage source. A more detailed neurophysiology introduction is in

Appendix A and complete studies are found in [16, 20].

The composite circuit model for therestingmembrane is a well-known RC low-pass filter shown

in figure 4.1 withGsyn fixed. The circuit model has resistors and capacitors in parallel, and is clearly
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Figure 4.1 The resting neural membrane is modeled as a RC circuit. The membrane itself is modeled
as a capacitor with capacitanceC, and the resting membrane conductance is modeled as a resistor with
resistance1/Gmem. EPSPs are generated by an increase in the synaptic conductanceGsyn (modeled as
a variable resistor), triggered by the presence of neurotransmitters at the post-synaptic terminal. The net
currents depend also on the net driving potential across the cell membrane, modeled as a voltage source.

a first order (i.e., single-pole) system. The single pole, RC lowpass-filter has a transfer function

given by

H(s) =
1/C

s+ 1/τ
, (4.4)

and an impulse response given by

hc(t) =
1
C
e−t/τu(t), (4.5)

whereR = 1/G (the total membrane resting conductance),τ = RC andu(t) is the unit step

function. A stationary RC circuit characterized by (4.4) captures resting membrane characteristics,

but in the presence of membrane activity (EPSPs) a more complicated model is necessary. EPSP

generation is due to increased synaptic conductance, causing an increase in the total membrane

conductance. In the presence of time-varying EPSPs, the membrane conductance is also time-

varying. A non-stationary RC circuit model with a time-varying resistanceRc(t) captures the time-

varying nature of the membrane. Thus, the SF acts as a lowpass-filter with atime-varyingpole at

−1
(Rc(t)C) .

RC circuit models and the underlying neural processes are continuous-time systems. However,

during data collection we sample the true membrane activity. All data processing and analysis
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must be done in discrete-time. We need a method for converting the RC circuit model defined by

neurophysiological characteristics to an approximately equivalent single-pole, discrete-time filter.

There are several mappings from thes-plane to thez-plane that will serve this purpose. We use

the impulse invariancemethod [21], ensuring the discrete-time unit sample response is a sampled

version of the continuous-time impulse response. In this method, thes-plane is mapped to the

z-plane by the equation

z = e(s/Fs), (4.6)

whereFs is the sampling rate (1000 Hz presently). For the stationary RC circuit model described

in equation (4.4), there is a pole in thes-plane at−1/τ . This translates to a pole in thez-plane at

a = e−(10−3/τ). The impulse-invariant discrete-time filter for the stationary RC circuit described in

(4.4) has a unit sample response given by

h(n) = anu(n), (4.7)

whereu(n) is the discrete-time unit step function.

A sampled version of the time-varying resistanceR(n) is determined using the EPSP value at

time stepn and the membrane resting conductance, according to the relationship measured in [26].

Thes-plane moving pole −1
R(n)C can be mapped to a series of approximately equivalentz-plane pole

locationsa(n). An example EPSP is shown in figure 4.2, along with the time-varying net membrane

resistanceR(n) and the corresponding pole locationa(n). The analogous non-stationary, discrete-

time system is described by the difference equation

y(n) = a(n)y(n− 1) + x(n). (4.8)
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Figure 4.2 Shown in the top panel is an example SF EPSP from a suddenly applied stimulus. The resting
membrane has a resistance of1/Gmem = 8 MΩ in this example, and a capacitance of 1.45 nF. The time-
varying resistanceR(n) generating the EPSP is shown in the middle panel. The resulting time-varying pole
locationa(n) of the impulse-invariant equivalent discrete-time system is shown in the bottom panel.

The discrete-time system described by equation (4.8) has an impulse response given by

h(n, k) =

(
n∏

l=k+1

a(l)u(n− k)

)
+ δ(n− k), (4.9)

whereh(n, k) is the response of the system at time stepn to a unit sample at time stepk, δ(k).

It is important to note a notation convention here. The product operator used in equation (4.9) and

throughout the remainder of this paper will be defined to be zero for any terms where the lower index

exceeds the upper index,
∏β
l=α x(l) = 0, α > β. The non-stationary system given in equation (4.9)

is the basis for a SF membrane noise model used in estimating EPSP KLs.
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4.2.2 Model-Based EPSP KL Calculation

To calculate a KL distance for EPSP inputs, the colored noise vectorCα must be completely

specified. Recall thatCα ∼ N(0,Kα), and the covariance matrixKα is given by the correlation

function

Φα(n,m) = E [Cα(n)Cα(m)] . (4.10)

The colored noise vectorCα can be thought of as white noise that has been passed through a single-

pole lowpass filter, described in terms of the difference equation (4.8),

Cα(n) = a(n)Cα(n− 1) +Wα(n), (4.11)

whereWα(n) ∼ N(0, σ2
α).

If the system were stationary (a(n) = a), the correlation function is straightforward to compute:

Φα(n,m) = E [Cα(n)Cα(m)] =
(σ2
α)a|n−m|

1− a2
.

In the non-stationary case, the noise vector must be written using the unit sample response given in

equation (4.9),

Cα(n) =
n∑

k=−∞
h(n, k)W (k). (4.12)

Equation (4.10) is much more complicated than the stationary case, but can be solved to give the
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correlation function for a first-order, time-varying AR process:

Φα(n,m) = σ2
α

[
δ(m− n) +

(
n∏

k=m+1

a(k)

)
+

(
m∏

r=n+1

a(r)

)

+
∞∑
l=1

(
n∏

k=n−l+1

a(k)
m∏

r=n−l+1

a(r)

)]
. (4.13)

This derivation is given in Appendix B.

Equation (4.13) may initially appear complex, but further examination reveals a computationally

inexpensive algorithm for computing individual terms. Consider an arbitrary term that corresponds

to an element on the diagonal of the covariance matrixKα:

Φα(n, n) = σ2
α

(
1 + a2(n) + a2(n)a2(n− 1) + a2(n)a2(n− 1)a2(n− 2) + . . .

)
. (4.14)

Given a term on the diagonal ofKα, terms one step off the diagonal are given by:

Φα(n+ 1, n) = σ2
α

(
a(n+ 1) + a(n+ 1)a2(n) + a(n+ 1)a2(n)a2(n− 1) + . . .

)
= Φα(n, n)a(n+ 1). (4.15)

Given a term on the diagonal ofKα, calculating the next term down the diagonal is also trivial:

Φα(n+ 1, n+ 1) = σ2
α

(
1 + a2(n+ 1) + a2(n+ 1)a2(n) + a2(n+ 1)a2(n)a2(n− 1) + . . .

)
= Φα(n, n)a2(n+ 1) + σ2

α. (4.16)
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Terms two steps (or more) off the diagonal follow in a similar way:

Φα(n+ 2, n) = Φα(n, n+ 2) = Φα(n, n+ 1)a(n+ 2) = Φα(n, n)a(n+ 1)a(n+ 2).

CalculatingΦα(n, n) from equation (4.14) requires computing a sum involving all previous

values ofa(m), m ≤ n. This is a stable system, meaning that all poles will be inside the unit

circle in thez-plane (a(n) < 1 for all n). For the present work, the poles are also all positive

(a(n) > 0). At some point in the infinite sum, the product of the square of these terms becomes

negligible.Φα(n, n) can be expressed as the individual sum ofM significant terms and the sum of

the remaining terms (∆M ):

Φα(n, n) = σ2
α

(
1 + a2(n) + · · ·+ a2(n)a2(n− 1) . . . a2(n−M + 1) + ∆M

)
.

The term∆M can be approximated by a geometric sum involvingã ≈ maxn a(n). The pole

locationa(n) is monotonically increasing with resistanceR. The maximum value ofa(n) is easily

found by using the resting membrane resistanceR, which is the minimum value ofR(n). The

approximation to∆M is given by:

αM =
∞∑

n=M+1

ã2n =
ã2M

1− ã2
.

From the definition of̃a, we know thatαM ≥ ∆M for all M . Assuming that all poles are positive,

it follows that the error term is bounded by

0 ≤ ε < σ2
ααM .
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With the present data,M can be chosen relatively low (∼ 40–50) to ensure that the error in calcu-

lating the first termΦ(1, 1) is much less than 1% of the value.

This model leads to a simple algorithm for calculating EPSP KLs. Under each stimulus condi-

tion, the EPSP responses are averaged to find the mean signalmα. The resting membrane conduc-

tanceGmem is used to find the resting membrane pole location, denotedã. From the point where the

analysis is to begin, a previous resting segment is used to estimate the colored noise variance,σ̂2
αc .

The resting membrane has a relatively stationary pole atã, so the white noise variance is related to

the colored noise variance asσ̂2
α = σ̂2

αc(1 − ã
2). The mean EPSP signal is used to calculate the

values ofR(n) using the membrane resting conductance,Gmem. The membrane capacitanceC and

the time-varying membrane resistanceR(n) are used to find the time-varying pole locationa(n)

(using the impulse invariance method). The pole locationsa(n), along withã andσ̂2
α are used to

approximate the term in the first row and column ofKα, given byΦ(1, 1) in equation (4.14). For

each successive time step of the analysis, the next row and column ofKα are calculated according

to the relations described in equations (4.15) and (4.16), using the existing values ofKα. For each

stimulus condition a mean vectormα and covariance matrixKα are calculated in this manner and

are used in the Gaussian EPSP model to calculate the KL distance as given in equation (4.2).

4.3 Stimulus Dependent Latency: Comparing KLs

Sections 4.2.2 and 4.1 describe algorithms for estimating KL distances given input EPSPs and

spike train outputs for two stimulus conditions. It is informative to plot the KL distance as it ac-

cumulates with each time step, and the time-varying information transfer ratio (defined in equation

(2.6)) is the ratio of the cumulative output KL and the cumulative input KL. These calculations quan-

tify the performance of hypothetical optimal detectors trying to distinguish two stimulus conditions
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using EPSP inputs and spike train outputs.

We would like the analysis to characterize SF system properties and not on experimental proce-

dure. In particular, an issue arises in calculating input or output KLs when responses have latencies

that depend on the stimulus. First, consider the SFs in the context of the entire experimental system

during sudden-onset stimuli, illustrated with abstract signals in a block diagram in figure 4.3. When

Brain
Sustaining

Fiber
∆ SF (α)

Xα Yα

∆ FE (α)
Front-end

Optic
Stimulus

(α)

∆ SF (α )0 SF (α )1∆(              -              )∆ FE (α )1∆ FE 0(              -              )

t0 t0 t0

(α )

Figure 4.3 Stimulus dependent delay in the crayfish visual pathway, illustrated with abstract signals in a
block diagram. Signals passing through the optic front-end (the pre-SF pathway) incur some delay that may
be stimulus dependent∆FE(α). Signals will then propagate through the sustaining fiber stage and incur
another (potentially stimulus dependent) delay∆SF (α).

a light with intensityα0 is applied at onset timet0, the optic front end (including the photoreceptors

through the medullary interneurons) passes the signal along with some delay∆FE . After another

delay∆SF , the SF generates a spike train response representing the light stimulus. For the other

stimulus condition, a light with intensityα1 is switched on att0 and the information propagates

through the front-end and SF, also with some delays.

Problems arise when any of these delays arestimulus dependent, ∆FE(α0) 6= ∆FE(α1) and

∆SF (α0) 6= ∆SF (α1). If ∆FE(α) is stimulus-dependent but the EPSP signals are time-aligned

according tot0, a large KL distance may be induced by the latency difference. The KL distance

is very sensitive to this situation, and even a small latency may introduce a very large distance.

Fundamentally, aligning signals byt0 and not accounting for stimulus-dependent delay implies

that these detectors have clairvoyant knowledge oft0, a landmark used to compare relative timing
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information. Ignoring stimulus-dependent delay in the analysis is unacceptable because giving the

detectors any extra knowledge (e.g., the presence and location oft0) would be an artifact of the

experimental procedure. We must consider the detection task as it would truly need to be performed:

a detector would have to watch a channel for anindefiniteamount of time, having no knowledge

when a signal is supposed to appear (i.e., no knowledge of an absolute timing landmark). With

respect to the latency difference between the signals, the detector would have to classify the signals

in the worst case scenario, or minimum KL situation.

We must ensure that no extraneous clairvoyant information is passed to the hypothetical detec-

tors, so we induce a latency difference between signals that produces the minimum KL between

them. This is conceptualized by the block diagram of figure 4.4. In this diagram, we show the

Fiber
Sustaining

Front-end
Optic

FE (α)−∆ −∆SF (α)

γ’
_<γ’

γ

γ

Figure 4.4 Not accounting for stimulus dependent delay in the analysis would be analogous to providing
the hypothetical detectors clairvoyant knowledge of an absolute timing landmark. We attempt to remove
the affects of stimulus dependent delay in the analysis by conceptually inserting boxes that remove delay
effects. With no timing knowledge the detectors would operate in the worst case scenario, corresponding to
the latency shift that produces minimum KL. The affect of the delay correction can be included in the analysis.
Because of the data processing inequality(2.1), the information transfer ratio measured with the delay boxes
(γ′) will be a lower bound for the true information transfer ratio (γ).

insertion of boxes correcting for the stimulus dependent delay. The information processing theory

applied here can account for such modifications in the analysis. We are interested in the true infor-

mation transfer ratio of the SF (γ), but with the stimulus dependent delay correction we are actually

measuringγ′, a lower bound forγ because of the data processing inequality of equation (2.1). With

the periodic sine-wave grating stimuli, the correction boxes will introduce phase shifts that result in
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the minimum KL between signal sets. It is also important to note that individual responses from one

stimulus condition are not shifted relative to each other. The whole set of responses to one stimulus

condition are shifted relative to a set from another stimulus condition.

With sudden-onset stimuli, the analysis window containing the transient response does not rep-

resent a periodic stimulus, so simple phase shifts to minimize KL are not possible. We therefore

approximate minimum KL by aligning responses based on the beginning of significant signal ac-

tivity. The EPSPs show a noisy background followed by a distinct positive deflection during the

transient response. For these signals, relative delay was determined by finding a linear fit to the

sharp positive deflection and calculating a common zero-intersect point among the different stimuli

conditions. The spike responses exhibit spontaneous activity and can therefore not be aligned by a

simple landmark such as the first-spike. For spike responses, type-based detection is used to locate

the start of a significant event in the data. Using the theory of types and Kullback-Leibler distances,

Gutman [9] derived a detector that uses a sample of training data and has the smallest possible

miss probability ofany detector using training data (with a bound on the false alarm probability

exponential decay rate). For spike responses, this is a null-hypothesis test where the hypothesis is

the presence of a signal with unknown structure. Essentially we are looking for something which

deviates from the background activity, and deviation is measured through KL distances. Training

data is taken from the pre-stimulus spike response and a test data vector is formed by incremen-

tally including the remaining spike response. For each stimulus condition, the first bin where the

hypothesis is accepted determines the net stimulus dependent latency. This is similar to a method

employed by Gruner and Johnson in [8].
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Chapter 5

Data Analysis

We applied the EPSP and spike train KL estimation methods described in chapter 4 to data

collected from crayfish SFs. The resistor-averaged KL (RKL) estimates are used to calculate the

information transfer ratio for SFs responding to different stimulus features and over a range of stim-

ulus values. We analyzed datasets from three separate preparations and neural units, representing

different stimulus features. Two datasets are responses to sudden-onset stimuli with varying light

intensity. The third dataset consists of responses to sine-wave grating stimuli with varying spatial

frequency and orientation. Because they are from different preparations, these datasets are analyzed

individually.

5.1 Sudden-Onset Light Intensity Dataset 1 (LI1)

The first light intensity dataset (denotedLI1) consists of responses to sudden-onset stimuli with

log intensity values chosen from the setLI1 = {−3.5,−3.0,−2.5,−2.0,−1.5,−1.0}, ordered

from weakest to strongest. A single trial consists of a dark adapting period followed by a suddenly

applied static stimulus covering the SF receptive field. In this preparation the membrane capacitance

and resting conductance were determined to be 1.45 nF and 1/(8.0 MΩ) respectively.

The mean EPSP signals elicited from these stimuli are shown in figure 5.1. The EPSPs exhibit

a quick positive deflection at stimulus onset, with a magnitude and slope that increase with stimulus

intensity. The EPSP transient lasts for a maximum of 150 ms, followed by a decay to a steady-

state level that is relatively constant over the next 150 ms. The spike response Post-stimulus time

(PST) histograms elicited from these stimuli are shown in figure 5.2. PST histograms are found
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Figure 5.1 Mean EPSP signals from sudden onset, light intensity datasetLI1. Above each plot is the log
intensity stimulus value producing the EPSP responses. Mean EPSPs are found by averaging responses from
several stimulus repetitions. All sudden-onset stimuli produce a transient positive deflection followed by a
decay to a sustained steady-state value. Stronger stimuli produce a larger deflection with a steeper slope.

by quantizing spike responses from several stimulus repetitions into bins and averaging the spike

counts in each bin. The spike responses also exhibit transient and steady-state behavior. During

the transient response, SFs produce a burst of spikes with maximum rates near 100 Hz for the

strongest stimuli. Firing rates drop to a relatively constant nominal level of 15–20 Hz during the

initial steady-state response.

Stimulus dependent delay is obviously present in both the EPSP and spike responses. We esti-

mate stimulus-dependent delay with methods described in section 4.3, and align signals by initial

significant activity. In the PST histograms shown in figure 5.2, the ‘x’ indicates the beginning of

significant activity determined by a type-based detector [9]. The spike responses under different

stimulus conditions are aligned by this landmark to estimate spike KLs. The EPSPs are aligned

under different stimulus conditions by the common zero-intersect of linear fits to the transient de-

flections, and the aligned mean EPSPs are shown in figure 5.3. We also use these EPSP and spike

train timing landmarks to compare input and output cumulative KL distances and calculate time-
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Figure 5.2 Post-stimulus time (PST) histograms from light intensity datasetLI1. Above each plot is the
log intensity stimulus value producing the spike responses. PST histograms are found by quantizing spike
responses from several stimulus repetitions into bins and averaging the spike counts in each bin. The PST
histograms shown here are also normalized by binwidth to estimate the time-varying spike discharge rate
[11]. The spike responses to sudden-onset stimuli also exhibit a transient burst of high-rate firing followed by
a decay to a sustained steady-state discharge rate. The ‘x’ marks indicate the beginning of significant signal
activity, found by a type-based null-hypothesis test. These marks are used to remove the stimulus dependent
delay in spike responses.

varying information transfer ratios.

Cumulative KLs are estimated using input and output responses for all possible pairs of stimuli

conditions in the datasetLI1. Because we use the resistor averaged KL distance described in section

2.4, the distances are symmetric for each pair of stimuli values. Figure 5.4 shows the cumulative

input EPSP KL distances for all possible pairs of stimuli. In this figure the outer axes denote stimuli

values and each inner axes contain the cumulative EPSP KL distance for a stimuli pair. The resistor

averaged distance has units of bits and the vertical scale on the plots of figure 5.4 is RKL/104.

The total EPSP KL distances accumulated over the entire analysis segment are also plotted for each

stimuli pair in figure 5.5. There are a few general trends worth noting. As expected, stimuli pairs that

are farther apart in intensity (signified by plots more toward the lower left corner of figure 5.4, or the

top of figure 5.5) tend to produce responses that have a larger total EPSP KL distance than do pairs
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Figure 5.3 The top plot shows an overlay of mean EPSPs for all stimuli values in the sudden-onset
light intensity datasetLI1. The bottom plot shows the mean EPSP responses with the estimated stimulus-
dependent delay removed. The stimulus-dependent delay is estimated by using a linear fit to the transient
deflection for each mean EPSP and calculating a common zero-intersect point.

that are closer together. Cumulative EPSP KLs also generally show two distinct time segments: a

large KL accumulation rate during the transient response and a smaller KL accumulation rate over

the steady-state response. The difference in KL accumulation rates is observed in the large slope

of the cumulative KL plot during the first∼ 100 ms, followed by a much smaller slope during

the remaining response. For example, the stimulus pair{α0 = −1.0,α1 = −3.5} shows a large

EPSP KL accumulation rate of roughly5 × 104 bits / 100 ms =5 × 105 bits/s during the transient

response and1 × 104 bits / 250 ms =4 × 104 bits/s during the remaining response. The EPSP KL

accumulation rates are over an order of magnitude different during the transient and steady-state

time segments in this example.

Similarly, output (spike train) cumulative KL distances for all possible stimuli pairs are shown

in figure 5.6. Error bars (90th percentile) are also shown for the cumulative spike KLs. The error

bars are generated by applying the bootstrap procedure [5, 10] to spike KL estimation, described in

[7, 12]. The total spike KL distances accumulated over the entire response segment are also plotted
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for each stimuli pair in figure 5.7. The cumulative spike KLs show some of the same general trends

that appeared in EPSP cumulative KLs. Generally the stimuli pairs that are farther apart in intensity

show larger total KL distances than stimuli pairs that are closer together. Cumulative spike KLs

also tend to show roughly the same transient and steady-state behavior as cumulative EPSP KLs.

The difference immediately evident is the scale: the spike KLs are four orders of magnitude smaller

than the EPSP KLs. The{α0 = −1.0,α1 = −3.5} stimulus pair shows spike KL accumulation

rates of roughly 5 bits / 100 ms = 50 bits/s during the transient response and 1 bit / 250ms = 4 bits/s

during the remaining response. As with the EPSP response, the difference between the transient and

steady-state spike KL accumulation rates is roughly one order of magnitude. However, the spike

KL accumulation rates are again four orders of magnitude smaller than the EPSP KL accumulation

rates.

The time-varying information transfer ratios (the ratio of spike train and EPSP cumulative KLs)

for all possible stimuli pairs are shown in figure 5.8. Error bars are plotted using the EPSP KL

estimate and the spike KL estimate error bars. We cannot directly calculated error bars for the

EPSP KL estimates (and consequently for the information transfer ratio estimates) because of the

estimator complexity. The bootstrap procedure is only applicable for certain classes of estimators

[5, 10], and it cannot be applied to the EPSP KL estimates to produce error bars. The error bars

shown are therefore really a lower limit for the true error bar width. The information transfer ratio

is a unit-less quantity and the vertical scale of the plots isγ/10−4. The most significant time-varying

trend in the information transfer ratio is the tendency to peak sharply during the transient responses

and decay to a relatively constant value. The information transfer ratio peaks are more pronounced

for smallchanges in the stimulus value, and the peaks can be nearly an order of magnitude greater

than the steady-state values. The steady-state information transfer ratios for each stimuli pair are
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also plotted in figure 5.9. The steady-state information transfer ratio values for the different stimuli

pairs vary little, with all of the stimuli pairs yielding a final value in the range (.6–2)×10−4. The

steady-state information transfer ratio values may exhibit slightly larger values for smaller stimuli

changes, though this trend is not clear considering the confidence intervals for the estimates.
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Figure 5.4 SF input (EPSP) cumulative KL distances for all stimuli pairs from sudden-onset, light
intensity datasetLI1. The outer axes denote the stimuli values that elicited the responses (α0 andα1).
The inner axes show the cumulative EPSP KL distance for a particular stimuli pair. The y-axis of the inner
plots is resistor averaged KL distance/104 (units of bits). The EPSP KL distances generally show two
distinct segments. This first segment consists of a very large accumulation of KL distance during the transient
EPSP response, indicated by a steep jump (large positive slope) in the cumulative KL plot. The second
segment shows a marked decrease in the KL accumulation rate (smaller positive slope) during the steady-
state response.
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Figure 5.5 SF KL distances calculated for the total EPSP response. The axes denote the stimuli values
that elicited the responses (α0 andα1). The height of the bar is the total KL distance accumulated over the
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larger stimuli differences produce larger EPSP KLs.
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Figure 5.6 SF output (spike) cumulative KL distances for all stimuli pairs from sudden-onset, light
intensity datasetLI1. The outer axes denote the stimuli values that elicited the responses (α0 andα1). The
inner axes show the cumulative spike KL distance for a particular stimuli pair. The y-axis of the inner plots
is resistor averaged KL distance (units of bits). Notice that this axis is four orders of magnitude smaller
than the EPSP cumulative KL plots shown in figure 5.4. Error bars (90th percentile) estimated using the
bootstrap procedure are also shown as dotted lines. The spike KL distances generally show the same two
distinct segments as in the EPSP KL distance plots. This first segment consists of a very large increase in
cumulative KL distance during the transient spike response, indicated by a steep jump (large positive slope) in
the cumulative KL plot. The second segment shows a marked decrease in the KL accumulation rate (smaller
positive slope) during the steady-state response.
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Figure 5.7 SF KL distances calculated for the total spike response. The axes denote the stimuli values
that elicited the responses (α0 andα1). The two light segments of each bar represent the upper and lower
confidence intervals, with the separating line indicating the estimated total KL distance accumulated over the
analysis segment (the final value of the cumulative EPSP KL plotted in figure 5.6). Generally, larger stimuli
differences produce larger spike response KLs.
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Figure 5.8 SF time-varying information transfer ratios for all stimuli pairs from sudden-onset, light
intensity datasetLI1. The outer axes denote the stimuli values that elicited the responses (α0 andα1). The
inner axes show the information transfer ratio for a particular stimuli pair as a function of time. The y-axis
of the inner plots is information transfer ratio/10−4 (γ/10−4), and is unit-less. The steady-state information
transfer ratio is relatively invariant to the size of the stimulus change. The time-varying information transfer
ratios generally show a peak during the transient response and a decay to a relatively constant steady-state
value. The largest transient peaks occur for small stimulus changes.
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Figure 5.9 Steady-state SF information transfer ratios for sudden-onset, light intensity datasetLI1.
The axes denote the stimuli values that elicited the responses (α0 andα1). The two light segments of each
bar represent the upper and lower confidence intervals, with the separating line indicating the steady-state
information transfer ratio for each stimuli pair (the final value of the cumulative EPSP KL plotted in figure
5.8).
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5.2 Sudden-Onset Light Intensity Dataset 2 (LI2)

The second light intensity dataset (denotedLI2) consists of responses to sudden-onset stimuli

with log intensity values chosen from the setLI2 = {−3.7,−3.5,−3.0,−2.5,−2.0,−0.5}, or-

dered from weakest to strongest. The experimental details are essentially the same as the first light

intensity dataset (LI1), with a single trial consisting of a dark adapting period followed by a sud-

denly applied static stimulus covering the SF receptive field. A different preparation is used here

than was used in theLI1 dataset, and the membrane capacitance and resting conductance for this

unit was determined to be 8.12 nF and 1/(4.8 MΩ) respectively.

The mean EPSP signals elicited from these stimuli are shown in figure 5.10. The same transient
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Figure 5.10 Mean EPSP signals from sudden onset, light intensity datasetLI2. Above each plot is the
log intensity stimulus value producing the EPSP responses. Mean EPSPs are found by averaging responses
from several stimulus repetitions.

and steady-state behavior seen in the EPSPs from datasetLI1 is also observed here. The most

significant difference between the sudden-onset light intensity datasets is the noticeably smaller

signal-to-noise ratio (SNR) in the data fromLI2. The noise power in theLI2 is noticeably higher

than in theLI1 data, and the weaker stimuli inLI2 exhibit lower sustained values during the steady-
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Figure 5.11 Post-stimulus time (PST) histograms from light intensity datasetLI2. Above each plot is
the log intensity stimulus value producing the spike responses. PST histograms are found by quantizing spike
responses from several stimulus repetitions into bins and averaging the spike counts in each bin. The PSTs
shown here are also normalized by the binwidth to estimate the time-varying spike discharge rate [11]. The
‘x’ marks indicate the beginning of significant signal activity, found by a type-based null-hypothesis test.

state response. Because the datasets were collected from different preparations, the membrane

characteristics (and consequently the SNRs) can vary substantially. It appears that the weakest

stimuli (LI2 = −3.7) is at or below threshold for generating significant SF input above the noise

background.

The spike response PST histograms elicited from these stimuli are shown in figure 5.11. These

spike responses also generally exhibit the same transient and steady-state behavior seen in theLI1

spike responses, but with overall higher discharge rates. As with the EPSP responses, it appears that

the weakest stimuli (LI2 = −3.7) is at or below threshold for eliciting a SF response.

Stimulus-dependent delay is estimated and removed using the same methods described for

datasetLI1 . In the PST histograms (figure 5.11), the ‘x’ marks again indicate the beginning of sig-

nificant activity determined by a type-based detector. The EPSPs are aligned by the zero-intersect of

a linear fit to the transient deflection, and the aligned signals are shown in figure 5.12. Cumulative
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Figure 5.12 The top plot shows an overlay of mean EPSPs for all stimuli values in the sudden-onset
light intensity datasetLI2. The bottom plot shows the mean EPSP responses with the estimated stimulus-
dependent delay removed. The stimulus-dependent delay is estimated by using a linear fit to the transient
deflection for each mean EPSP and calculating a common zero-intersect point.

EPSP KLs are estimated using input and output responses for all possible pairs of stimuli conditions

in the setLI2, and the resulting estimates are plotted in figure 5.13. In this figure the outer axes

again denote stimuli values (from the setLI2) and each inner axes contains the cumulative EPSP

KL distance for a stimuli pair. It is important to note that in this dataset, the stimuli intensity values

in the setLI2 arenot equally spaced. The spacing between the inner plots does not reflect the dis-

tance between the stimuli intensity values and the outer axes must be read to interpret the stimulus

changes. The resistor averaged distance has units of bits and the vertical scale is RKL/102. The

total EPSP KL distances accumulated over the analysis segment are also plotted for each stimuli

pair in figure 5.14. The same general trends noted for datasetLI1 are also observed here, though

much less pronounced. Stimuli pairs that are farther apart again tend to produce a larger total EPSP

KL distance than pairs that are closer together. The cumulative EPSP KLs also generally show a

larger KL accumulation rate during the transient response than in the steady-state response. In one

example stimuli pair for this dataset,{α0 = −2.0,α1 = −3.5}, we observe an accumulation rate
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of roughly8 × 102 bits / 50ms =1.6 × 104 bits/s during the transient response and5 × 102 bits /

125ms =4 × 103 bits/s during the remaining response. The significantly lower SNR for theLI2

dataset causes both the KL accumulation rates to be two orders of magnitude smaller than those of

LI1. The difference between transient and steady-state segments in this example is approximately a

factor of four, but in theLI1 example there was a full order of magnitude distinction. The example

stimuli pair used here is one of the more dramatic cases, and even less distinction is visible with

many other stimuli pairs.

Output (spike train) cumulative KLs for all possible stimuli pairs are shown in figure 5.15. The

total EPSP KL distances accumulated over the analysis segment are also plotted for each stimuli

pair in figure 5.16. The spike KLs also show less pronounced versions of the same trends observed

in datasetLI1. Stimuli pairs that are farther apart generally show larger total KL distances than

stimuli pairs that are closer together. Differences in transient and steady-state KL accumulation

rates are also observable in some stimuli pairs, with the{α0 = −2.0,α1 = −3.5} pair showing

KL accumulation rates of roughly 1.8 bits / 50ms = 36 bits/s and .4 bits / 125ms = 3.2 bits/s,

respectively.

The time-varying information transfer ratios for all possible stimuli pairs are shown in figure

5.17. The information transfer ratio is a unit-less quantity and the vertical scale of the plots is

γ/10−2. The steady-state information transfer ratios for each stimuli pair are also plotted in figure

5.18. The steady-state information transfer ratios for this dataset are larger than those estimated for

datasetLI1. Examining the EPSP and spike KL distances, the spike KLs are in the same range as

in LI1, but the EPSP KLs are roughly two orders of magnitude smaller because of the difference in

SNR. All stimuli pairs involving stimulus log intensityLI2 = −3.7 have higher than average spike

KL distances. The spontaneous SF discharging to this threshold response is highly differentiable
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from the responses to above-threshold stimuli. Consequently, the information transfer ratios involv-

ing theLI2 = −3.7 stimulus are abnormally high. If responses toLI2 = −3.7 are not considered,

the steady-state values of the information transfer ratio are relatively constant and are almost all in

the range (1.7–5)×10−3. The time-varying information transfer ratios for this dataset again show

the tendency to peak sharply during the transient portion of the responses and decay to a relatively

constant value. The information transfer ratio peaks are again more pronounced forsmallchanges

in the stimulus value.
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Figure 5.13 SF input (EPSP) cumulative KL distances for all stimuli pairs from sudden-onset, light
intensity datasetLI2. The outer axes denote the stimuli values that elicited the responses (α0 andα1). The
inner axes show the cumulative EPSP KL distance for a particular stimuli pair. The y-axis of the inner plots
is resistor averaged KL distance/102 (units of bits). These EPSP cumulative KL distances show some of the
same transient and steady-state behavior seen in the datasetLI1, though it is much less pronounced.
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Figure 5.14 SF KL distances calculated for the total EPSP response. The axes denote the stimuli values
that elicited the responses (α0 andα1). The height of the bar is the total KL distance accumulated over the
analysis segment, and is the final value of the cumulative EPSP KL plotted in figure 5.13. Generally, larger
stimuli differences produce larger EPSP KLs.



56

−0.5 −2 −2.5 −3 −3.5

−3.7

−3.5

−3

−2.5

−2

Log Intensity (α
0
)

Lo
g 

In
te

ns
ity

 (
α 1)

0
2
4
6

R
K

L

0
2
4
6

R
K

L

0
2
4
6

R
K

L

0
2
4
6

R
K

L

200 300 400
0
2
4
6

R
K

L

ms
200 300 400

ms
200 300 400

ms
200 300 400

ms
200 300 400

ms

Figure 5.15 SF output (spike) cumulative KL distances for all stimuli pairs from sudden-onset, light
intensity datasetLI2. The outer axes denote the stimuli values that elicited the responses (α0 andα1). The
inner axes show the cumulative spike KL distance for a particular stimuli pair. The y-axis of the inner plots is
resistor averaged KL distance (units of bits). Notice that this axis is two orders of magnitude smaller than the
EPSP cumulative KL plots shown in figure 5.13. Error bars (90th percentile) estimated using the bootstrap
procedure are also shown as dotted lines. Spike response KLs for this dataset also show some of the same
general behavior as the datasetLI1, though less pronounced.
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Figure 5.16 SF KL distances calculated for the total spike response from datasetLI2. The axes denote
the stimuli values that elicited the responses (α0 andα1). The two light segments of each bar represent the
confidence intervals, with the separating line indicating the estimated total KL distance accumulated over the
analysis segment (the final value of the cumulative spike response KL plotted in figure 5.15). Generally, larger
stimuli differences produce larger spike response KLs. The weakest stimuli (LI2 = −3.7) is at (or below)
threshold for eliciting a SF response. The spontaneous discharging generates large KLs when compared with
the structured responses to above-threshold stimuli.
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Figure 5.17 SF time-varying information transfer ratios for all stimuli pairs from sudden-onset, light
intensity datasetLI2. The outer axes denote the stimuli values that elicited the responses (α0 andα1). The
inner axes show the information transfer ratio for a particular stimuli pair as a function of time. The y-axis
of the inner plots is information transfer ratio/10−2 (γ/10−2), and is unit-less. As with datasetLI1, the
time-varying information transfer ratios generally show a peak during the transient response and a decay to
a relatively constant steady-state value. The peaks are more pronounced for small stimulus changes than for
large changes.
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Figure 5.18 Steady-state SF information transfer ratios for sudden-onset, light intensity datasetLI2. The
axes denote the stimuli values that elicited the responses (α0 andα1). The two light segments of each bar
represent the confidence intervals, with the separating line indicating the steady-state information transfer
ratio for the stimuli pair (the final value of the time-varying information transfer ratio plotted in figure 5.17).
The weakest stimulus (LI2 = −3.7) appears to be at (or below) threshold of eliciting SF response. The large
KL distances generated when comparing the spontaneous SF discharges in this case to the structure spike
responses of stronger stimuli cause the information transfer ratios involving this stimulus to also be higher
than the others.
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5.3 Sine-wave Grating Spatial Frequency Dataset 1 (SW1)

The first spatial frequency dataset consists of fixed SF responses to moving sine-wave gratings

with spatial frequency parameter values chosen from the setSW1 = {60, 40, 30, 24, 20, 12}. The

spatial frequency parameterSW1 represents the spatial wavelength of a sine-wave grating, measured

in deg/cycle. The spatial wavelength of a grating is the angular distance in the visual field covered

by one grating period. In this dataset all of the gratings were moving with an orientation of225◦ and

a temporal frequency of approximately 2 Hz. A temporal frequency of 2 Hz means that the speed

of the stimulus is adjusted depending on the spatial frequency so that a fixed point in space (e.g.,

the middle of the SF visual field) will have an intensity that varies sinusoidally with a frequency

of 2 Hz. An orientation of0◦ would represent horizontal bars moving from top to bottom, and

90◦ would represent vertical bars moving from the front of the preparation to the back. Other

orientations represent the logical extension from these examples. In this preparation the membrane

capacitance and resting conductance were determined to be 13.6 nF and 1/(4.45 MΩ) respectively.

The mean EPSP signals elicited from these stimuli are shown in figure 5.19, and the correspond-

ing spike response PST histograms in figure 5.20. The EPSP responses to the sine-wave grating

stimuli in this dataset have smaller overall signal power than those in the sudden-onset datasets

(LI1 andLI2). The corresponding spike responses also have lower overall discharge rates than the

sudden-onset stimuli datasets.

Stimulus-dependent delay was estimated for sudden-onset stimuli datasetsLI1 andLI2 by de-

termining the beginning of significant signal activity. Sine-wave gratings are continuously repeating

stimuli, with no onset landmark to identify. As discussed in section 4.3, EPSP and spike response

pairs are compared using the phase shifts yielding minimum KL distances at the SF input and out-

put. Circular shifts in a pair of responses will not affect the total KL accumulated over one response
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Figure 5.19 Mean EPSP signals from sine-wave grating, spatial frequency datasetSW1. Above each
plot is the wavelength stimulus value producing the EPSP responses. Mean EPSPs are found by averaging
responses from several stimulus repetitions.

period, but can affect the cumulative KL distance as a function of time. Because there is no con-

cept of a stimulus onset time and therefore no way to compare cumulative KLs at the SF input and

output, only the total KL distance accumulated over a period will be examined.

The total EPSP KL distances for each stimuli pair are plotted in figure 5.21. As with the plots

for datasetLI2, the stimulus values are not equally spaced. The spacing between plotted bars

does not reflect the unequal spacing between stimuli values, and the axes must be carefully read to

determine the stimulus change. The total EPSP KL distances are on the same scale as the EPSP KLs

from datasetLI1, but the same trends observed there are not present here. All pairs involving the

response to stimulusSW1 = 24 deg/cycle have larger than average EPSP KL distances. Excluding

those responses, all other pairs have a relatively constant total KL near104. In particular, larger KLs

for larger stimulus changes arenot observed.

Total spike response KL distances for each stimuli pair are plotted in figure 5.22. The total

spike KLs for this dataset are on the same scale as the responses to the sudden-onset stimuli. Unlike
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Figure 5.20 Post-stimulus time (PST) histograms from sine-wave grating, spatial frequency dataset
SW1. Above each plot is the wavelength stimulus value producing the EPSP responses. PST histograms
are found by quantizing spike responses from several stimulus repetitions into bins and averaging the spike
counts in each bin. The PSTs shown here are also normalized by the binwidth to estimate the time-varying
spike discharge rate [11].

the EPSP responses for this dataset, the spike responses do exhibit larger KLs for larger stimulus

changes. The presence of output KL distance structure that is not evident with the input KLs is

surprising and inexplicable at this point. There does appear to be a preference in the spike KL

distances toward the left portion of figure 5.22. Because of the unequal spacing between the spatial

wavelengths in the setSW1, adjacent stimuli pairs in the left half of the figure represent greater

absolute stimulus changes than those pairs in the right half of the figure.

The information transfer ratios for each stimuli pair are also plotted in figure 5.23. The informa-

tion transfer ratios for this dataset are on the same scale as the information transfer ratios for dataset

LI1. The information transfer ratios exhibit some structure, with larger values for larger changes in

stimuli. This trend occurs because the same behavior is observed in the spike KLs, but very little

structure is present in the EPSP KLs.
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Figure 5.21 SF KL distances calculated for one period of EPSP response to sine-wave grating stimuli.
The axes denote the stimuli values that elicited the responses (α0 andα1). The height of the bar is the total
KL distance accumulated over one period.

5.4 Sine-wave Grating Spatial Frequency Dataset 2 (SW2)

The second spatial frequency dataset consists of fixed SF responses to moving sine-wave grat-

ings with spatial frequency parameter values chosen from the setSW2 = {60, 40, 30, 24, 20, 12}.

These are the same spatial wavelengths used in the first spatial frequency dataset (SW1). In this

dataset all of the gratings were moving with an orientation of45◦, the opposite direction as the grat-

ings in datasetSW1. The grating again had a temporal frequency of approximately 2 Hz. The same

preparation and unit was used in this dataset as was used inSW1, so the membrane capacitance and
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Figure 5.22 SF KL distances calculated for one period of a spike response to sine-wave grating stimuli.
The axes denote the stimuli values that elicited the responses (α0 andα1). The two light segments of each
bar represent the confidence intervals, with the separating line indicating the estimated total KL distance
accumulated over one period.

resting conductance values are the same.

The mean EPSP signals elicited from these stimuli are shown in figure 5.24, and the correspond-

ing spike response PST histograms in figure 5.25. Both the mean EPSPs and spike responses have

less overall structure than responses to the same stimuli moving in the opposite direction (dataset

SW1).

The total EPSP KL distances for each stimuli pair are plotted in figure 5.26. The EPSP KL

distances are on the same scale as the EPSP KLs generated with the datasetSW1, but in this dataset
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Figure 5.23 SF information transfer ratios for sine-wave grating, spatial frequency datasetSW1. The
axes denote the stimuli values that elicited the responses (α0 andα1). The two light segments of each bar
represent the confidence intervals, with the separating line indicating the information transfer ratioγ for the
stimuli pair.

there are not large distances generated when the stimulus with spatial wavelengthSW2 = 24 is

used. The apparent preference for differentiating the stimulusSW1 = 24 and notSW2 = 24 could

represent directionally selective “tuning” for a particular spatial frequency, or it may be an anomaly

of this dataset. The behavior should be observed across a broader range of preparations to examine

the presence of a significant trend. As in datasetSW1, the EPSP responses do not generate the

largest KL distances for the largest spatial wavelength changes. There does appear to be a slight

preference for the stimuli pairs shown in the left half of figure 5.26, representing larger spatial
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Figure 5.24 Mean EPSP signals from sine-wave grating, spatial frequency datasetSW2. Above each
plot is the wavelength stimulus value producing the EPSP responses. Mean EPSPs are found by averaging
responses from several stimulus repetitions.

wavelengths and absolute stimulus changes than the pairs on the left half of the figure.

Total spike response KL distances for each stimuli pair are plotted in figure 5.27. The spike KLs

in this dataset show larger KL distances between responses with large stimulus changes. This trend

was observed in all of the sudden-onset datasets, but not in the first sine-wave grating datasetSW1.

The information transfer ratios for each stimuli pair are also plotted in figure 5.28. The informa-

tion transfer ratios for this dataset are generally near10−4, as in theLI1 dataset. Because the EPSP

KLs show little structure and the spike KLs show preference for both large stimulus changes and

stimuli with large wavelengths, those trends are also observable in the information transfer ratios.
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Figure 5.25 Post-stimulus time (PST) histograms from sine-wave grating, spatial frequency dataset
SW2. Above each plot is the wavelength stimulus value producing the EPSP responses. PST histograms
are found by quantizing spike responses from several stimulus repetitions into bins and averaging the spike
counts in each bin. The PSTs shown here are also normalized by the binwidth to estimate the time-varying
spike discharge rate [11].
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Figure 5.26 SF KL distances calculated for one period of EPSP response to sine-wave grating stimuli.
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Figure 5.27 SF KL distances calculated for one period of a spike response to sine-wave grating stimuli.
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Figure 5.28 SF information transfer ratios for sine-wave grating, spatial frequency datasetSW2. The
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5.5 Sine-wave Grating Orientation (Motion Direction) Dataset (SD)

The sine-wave grating stimuli used as datasetsSW1 andSW2 present gratings with the same

wavelength parameters to the same preparation and neural unit, but with opposite motion direc-

tions. These datasets can also be considered jointly as six separate trials where orientation (motion

direction) is the changing parameter. To be explicit, responses to the same wavelength and opposite

motion directions are compared directly for all six different values of grating spatial wavelength.

The EPSP KLs, spike response KLs and information transfer ratios are plotted in figure 5.29. The
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Figure 5.29 Responses to sine-wave gratings with the same wavelength and opposite motion direction
were compared separately for all six values of wavelength available in datasetsSW1 andSW2. The top plot
shows the EPSP KL distances, the middle plot shows the spike response KL distances, and the bottom plot
shows the information transfer ratios.
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information transfer ratios are nearly all less than10−4, with the exception of the responses to40◦

deg/cycle stimuli. The information transfer ratios tend to increase as the spatial wavelengths ap-

proach40◦ deg/cycle, possibly indicating a “tuning”, or preference for that range of stimuli when

representing direction information.

5.6 Theoretical Spike Generator Example

The preceding data analysis illuminated some general trends: unexpectedly low values of the

SF information transfer ratio, time-varying information processing capabilities with sudden-onset

stimuli and possibly better information transfer for small stimulus changes. One wonders if these

effects are inherent in any system that converts analog stimuli to point process responses or whether

the SFs have unique characteristics. We want to explore the role of general spike generators and

specifically the effect of discharge rates in such systems. We use a simple theoretical system that

takes a Gaussian random variableX̃ ∼ N(θ, σ̃2) as input and produces a Poisson processỸ with

rateλ = GX̃ as output (G is a deterministic scaling factor). By specifyingθ andσ̃2, the uncondi-

tional distribution onỸ can be analytically determined. Given two different mean input valuesθ0

andθ1, the KL distance between the input Gaussian random variables and the output Poisson ran-

dom variables can be analytically calculated. The derivation of the unconditional probability at the

output of this theoretical system can be found in Appendix C. The calculation finds the probability

mass function for̃Y (technically it has infinite support, but enough terms can be found to render the

error negligible). This theoretical system is not intended to be an accurate model for SF behavior,

but rather an abstract exploration of spike generators having input SNRs and output discharge rates

similar to the SFs.

We explored the theoretical system’s information processing properties by varying the difference
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between input meansθ0 andθ1 which were chosen to be comparable to the steady-state EPSP values

found in datasetLI1. A gain factorG was chosen so thatλ was comparable to the steady-state

discharge rates seen in the same data. The results are plotted in figure 5.30. The output KL distance
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Figure 5.30 Information processing characteristics for a simple theoretical spike generator. The top
panel shows the input KL for two Gaussian random variables with increasing difference between the means,
(θ0 − θ1). The middle panel shows the output KL for a simple spike generator with event rates that are
multiplicative scalings of the input means. As the input mean difference increases the difference in event
rates also increases contributing to higher KL. The dotted line shows the result when the scaling factor is
doubled. The bottom panel shows the corresponding information transfer ratios. The event rates are in the
same general range as the steady-state spike rates typically seen in SF data, and the information transfer
ratio is on the order of10−3. The information transfer ratio for this simple theoretical system does show the
trend that the system has better information processing capabilities for small input changes than for large
changes.

is plotted as the solid line in the middle panel of figure 5.30. As expected, increasing the input mean

difference(θ0− θ1) increases the rate difference(λ0−λ1), and therefore increases the KL distance

at the system output. The resulting information transfer ratio is plotted as the solid line in the bottom

panel of figure 5.30. The output KL values (and consequently the information transfer ratios) are
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much smaller than those estimated in theLI1 data. The discrepancy exists partially because in this

simple spike generator we approximate rates (and input-output relationships) that are similar to only

the steady-state portion of the SF responses. Two distinct trends observed in this theoretical spike

generator match those seen in the SF analysis: the information transfer ratios are very low using the

present rates and the system has better information processing capabilities for small changes in the

input than large changes. The same experiment was repeated with the gain factor doubled (doubling

the output rates), and these results are plotted in figure 5.30 as dotted lines. The increased output

rates also increase the output KL distance and therefore increase the information transfer ratio.

The simple system can be extended to explore the time-varying nature of its information transfer

ratio to inputchanges. Given a Gaussian random processX̃(t), an intensity functionλ(t) = GX̃(t)

can be formed in the same manner as above. The unconditional probability mass function on event

counts in a time bin0 ≤ t ≤ T depends on the integral of the intensity function over that bin,

Λ(0, T ) =
∫ T

0 λ(t)dt. If X̃(t) is a Gaussian random process thenΛ(0, T ) is a Gaussian random

variable. Given input random processes with two different means, the unconditional probability

mass functions for event counts in the bin0 ≤ t ≤ T and the resulting output KL distance can

be computed. In the SF spike responses to sudden-onset stimuli there is transient behavior that

cannot be explained by a simple scaling of the EPSPs. The sudden EPSPchangesalso play a role

in increasing the discharge rate. We can use a more complicated intensity function to capture some

transient behavior in the output process. We use an extended intensity function

λ(t) = GsX̃(t) +Gt
dX̃(t)
dt

, (5.1)

incorporating both a steady-state gainGs and a transient gainGt. The statistics ofΛ(0, T ) are
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only slightly more complicated to compute using this extended intensity function. As in the earlier

theoretical system, we do not intend to model actual SF spike generation. The only goal of this the-

oretical spike generator is to explore the time-varying information processing processing properties

of a simple spike generation system that incorporates dependence on input changes over time.

Using a sample pair of responses from theLI1 dataset, values ofGs andGt are estimated that

roughly predict the discharge rate range estimated in PST histograms for spike responses under

both stimulus conditions. The top panels of figure 5.31 show the mean EPSP functions for the

two example stimuli. The middle panels contain the PST histogram estimated rates as dots and

solid lines indicating event rates predicted by approximating equation (5.1) using the mean EPSPs.

The cumulative EPSP KLs taken from the data analysis of section 5.1 are plotted in the top panel
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Figure 5.31 Sample mean EPSPs, estimated spike rates from data and predicted event rates. The top
panels show the mean EPSPs from the sample pair of stimuli taken from theLI1 dataset. The middle panels
show the estimated spike rates from the data PST histograms (as dots) and the event rates predicted from
the EPSPs and equation(5.1). The bottom panels show the same estimated spike rates from the data and
predicted rates whenGt = 0.
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of figure 5.32. We determine the probability mass functions for event counts in each bin using
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Figure 5.32 Information processing characteristics of a simple time-varying system. The input processes
are an example pair of EPSP responses from datasetLI1. Their cumulative KLs are shown in the top panel.
The middle panel shows the cumulative KL for the simple theoretical spike generator. The solid line show
results from the complex intensity function depending on the EPSP derivative and the dotted line show results
from the simplified intensity function withGt = 0. The bottom panel shows the time-varying information
transfer ratio for this theoretical system. The solid line again denotes results from the complex intensity
function and the dotted line represents results from the simplified intensity function. Notice than when the
output’s direct dependence on transient input behavior is removed by simplifying the intensity function, the
information transfer ratio does not exhibit the same sharp transient peak.

the intensity function of equation (5.1) and the mean EPSPs under each stimulus condition. The

cumulative KLs are calculated (assuming independent bins) and are plotted as the solid line in the

middle panel of figure 5.32. The resulting time-varying information transfer ratio for this system is

plotted as the solid line in the bottom panel of figure 5.32. The same transient peak seen in the SF

analysis is also present here.

Even though both input and output KLs exhibit some transient and steady-state behavior, it is
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not necessary that every system with time-varying behavior will automatically exhibit time-varying

information processing capabilities. To illustrate, the same theoretical analysis was repeated setting

Gt = 0. The output event rates will still have transient and steady-state rates because the input

EPSPs have transient and steady-state values, but the higher-order explicit dependence on EPSP

change is eliminated. The bottom panels of figure 5.31 shows the PST histogram estimated rates

from the data as dots and solid lines indicate the event rates predicted using the mean EPSPs and

equation (5.1) withGt = 0. The resulting cumulative output KL and time-varying information

transfer ratio are plotted as dashed lines in figure 5.32. The input and output cumulative KLs still

show some transient and steady-state behavior, though it is less pronounced in the output KL. The

time-varying information transfer ratio is much more constant and does not obviously show a large

peak followed by a decay to a steady-state value.
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Chapter 6

Conclusions

The SF information transfer ratios calculated in this work are tied together by their common

range of the values. Regardless of the stimulus feature being examined (e.g., light intensity in

sudden-onset stimuli, spatial frequency in sine-wave gratings, motion direction) the steady-state

information transfer ratios were on the order of10−3 at the maximum(only in one case) and almost

always on the order of10−4. As described in section 2.4, the information transfer ratio is always

between zero and one, with a value of zero representing total information loss about the stimulus

change. Such a large decrease in information content at the SF stage is counter-intuitive as a system

design. The SFs receive inputs from an excitatory receptive field that frequently has an inhibitory

surrounding field. Other than the general receptive field properties, very little processing has been

performed on the signals by the SF stage and it can be thought of as a front-end to stages where

significant processing does occur. From a design standpoint, it is generally desirable to minimize

unrecoverable loss at all stages, particularly in the front-end.

We must also recall that the information transfer ratio is not an arbitrary measure of perfor-

mance, but specifically characterizes the asymptotic performance difference between optimal de-

tectors operating on the EPSP and spike train responses. The asymptotic false alarm error rate for

a Neyman-Pearson type detector has an exponential decay rate that is equal to the KL distances

between the data. Because of the data processing inequality (2.1), the false-alarm error rate for

the detector operating on the EPSP inputs must decay faster than the rate for the detector distin-

guishing the spike response outputs. Graphically, the performance difference is shown in 6.1. As

the observation time increases (L), the false-alarm error probabilities for optimal detectors at the
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Figure 6.1 Shown are conceptual asymptotic false-alarm rates for optimal Neyman-Pearson operating on
the SF input EPSPs (Xα) and output spike trains (Yα). The slopes of the lines are the negative of the EPSP
and spike response KL distances. The ratio of the slopes is the SF information transfer ratio. The vertical
offsets are problem dependent, so the absolute performance difference for an specific number of observations
L0 is unknown.

input and output of a system will eventually become straight lines when plotted on semilogarithmic

coordinates. The slopes of these lines are the negative of the KL distances between the probabil-

ity functions. Theratio of these slopes is the information transfer ratio. In the simple theoretical

spike generation example the information transfer ratio is on the order of10−3, meaning theslopes

differ by a factor of 1000 (three orders of magnitude). The large slope difference suggests that the

performance gap can be overwhelming with increasing observation time.

We know crayfish are able to extract information about stimuli from SF output spike trains

because eyestalk reflexes are influenced by the specific light stimulus. Initially the crayfish ability

to extract useful information from the SF response seems to contradict the information processing

analysis that shows very little stimulus information is being passed from input to output. It is

imperative to remember the information transfer ratio measures information present at the SF output

relative to information available at the input. There may be enough information in the SF output

to make reasonable decisions about the stimulus, but the present question is how wellcould those

decisions be made by observing the SF EPSP input instead. The very low information transfer

ratio values can be illuminated by considering the rate at which the EPSP and spike signals can

be used to convey information. In the analog EPSPs, information can be communicated as fast
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as the highest frequencies present in those signals. Theoretically, even a sampled version of the

analog signal could communicate information with each sample. However, a single spike train can

only communicate information with each action potential, and it therefore limited by the discharge

rate. With the stimuli used in this analysis, the discharge rates are not high enough to convey the

vast amount of information about the stimulus contained in the analog EPSPs. The discrepancy

is particularly evident when the EPSP SNRs are very high. The simple theoretical example in

section 5.6 showed that the output KL distance increases (resulting in better information processing

capabilities) as event rates increase. We conclude that the crayfish SF may be severely limited in its

information processing capabilities by the low spike rates typically produced.

With the second sudden-onset light intensity datasetLI2, the information transfer ratios were

generally an order of magnitude larger than in the first sudden-onset light intensity datasetLI1. The

two experiments were essentially the same, but were performed on two different preparations. The

primary difference in the datasets was the discrepancy in SNRs of the EPSP signals. The EPSP

responses in the preparation used to collect theLI2 data were much noisier than the corresponding

responses from theLI1 preparation. Though the spike responses KLs were on the same scale in

these two datasets, a system’s information processing capabilities are quantified according to what

it presents at the output given what was present at the input. For preparations and units that output

spike trains with comparable KLs, the unit that produces those spike responses with lower SNR

EPSPs has suppressed less information about the stimulus present in the EPSPs. Because of the

inherent variation between the responses, we may not make direct comparisons using data collected

from different preparations.

Plotting the information transfer ratio as a function of time for the sudden-onset stimuli revealed

an interesting trend in the dynamic SF information processing capabilities. The time-varying in-
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formation transfer ratio generally revealed a sharp increase immediately after the stimulus onset,

followed by a slow decrease to a sustained value during the steady-state response. The peak could

be as much as an order of magnitude larger than the sustained value, and was generally more pro-

nounced for small stimulus changes. When also observing the stimulus-dependent crayfish light

reflex to sudden-onset stimuli, the behavior is complete within 100–150 ms after the transient spike

response. Accounting for the latency of the motorneurons and muscle contractions, the information

from the stimulus conveyed in the reflex behavior must be communicated through the SF in the first

100 ms after stimulus onset. This corresponds to the transient portion of the spike response, and

is corroborates our characterization of the time-varying SF information transfer ratio. The amount

of information being transmitted about a whole stimulus from input to output may have overall low

values, but the SF is communicating the majority of that information during the transient response.

The SF information processing capabilities appear to be limited in part by the discharge rates

present at the output, which clearly depend on the value of the input EPSP (v(t)). The performance

increase during the transient response may be because of significant firing rate increases due to a

dependence onchangesin the EPSP
(
dv(t)
dt

)
. The same time-varying information transfer ratio

behavior was observed with the simple theoretical spike generator described in section 5.6 when the

outputs were explicitly dependent on recent changes in the input. The dynamic information transfer

ratio peak was not as evident in the theoretical example when the output only depends on the current

input value. With dependence only on the present input value (v(t)) and no direct dependence on

changes in the
(
dv(t)
dt

)
, the theoretical spike generator would transfer information about stimulus

changes with the same efficiency as it transfers information about sustained values. The transient

nature of the information transfer ratio is consistent with a system that is meant to encode stimulus

changesmore efficiently than absolute stimulus values.
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The membrane noise model presented in section 4.2.1 is necessary to characterize the proba-

bility law governing the EPSP SF inputs. Unless measurement noise and spike separation artifacts

can be eliminated, such a model will be needed. When looking at the power spectrum of sample

EPSP responses, it appears that this membrane model may not completely characterize the activity.

The most dominant characteristics are captured and the present model suffices as a first-order ap-

proximation. However, to be more accurate in estimating KL distances between EPSP responses,

higher-order models should be explored.

We are presently unable to generate error bars for EPSP KL or information transfer ratio esti-

mates. The bootstrap procedure was employed to calculate error bars in the spike response KL esti-

mates, but the bootstrap procedure cannot be applied effectively to all types of estimators. Methods

for quantifying the confidence of the EPSP KL and information transfer ratio estimates should be

explored. The confidence bounds for the spike response KL estimates are very wide, and it is de-

sirable increase the confidence of the estimates. The single biggest factor in our estimator accuracy

is the amount of available data, and an increase in the dataset size would improve the estimates.

The independent bin assumption used in estimating spike response KLs may also be unrealistic and

larger datasets would allow for higher order Markov dependence structures to be included.

Finally, the present analysis concentrates on SF performance over a few stimulus features.

Larger segments of the system should be analyzed over a wider range of stimulus features. Opto-

motor neurons receive inputs from the SFs and there may be complicated interactions taking place

within the SF ensembles. The optomotor neurons give input to the muscles responsible for eyestalk

reflex movement, and this behavior could be considered as one output of the total crayfish visual

system. The larger picture of total information processing in the crayfish visual system can only be

achieved when the post-sustaining fiber components are also analyzed.
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Appendix A

Membrane Physiology

We must understand the physiological basis of EPSP generation to develop a model capturing the

membrane noise characteristics. The neural membrane is a two-layer lipid structure, approximately

6 nm thick, that is virtually impermeable to ions [20]. An electrical potential across the membrane

is created by an excess of cations (positively charged ions) and anions (negatively charged ions) on

opposite sides of the membrane. For example, a negative membrane potential is produced by an

excess of anions inside and cations outside the membrane with equal and opposite charges. Both

the intracellular cytoplasm and the extracellular solution are electrically neutral, so the strongest

electrical force these ions feel is their mutual attraction. The excess ions will be attracted toward

each other but remain separated by the impermeable cell membrane. Cell membranes separate and

store ionic charge the same way capacitors function with free electrons.

While the lipid membrane itself is impermeable to ions, it is embedded with proteins forming

ion channels. These channels can be non-selective, but are frequently specific. They can allow only

cation or anion movement, and sometime are specific to a particular ion species. These channels

open and close stochastically, with the probability of opening frequently influenced by the presence

of a stimulating factor. Forvoltage-gated channelsthe probability of a channel opening increases

with electrical potential across the membrane. Forligand-gated channels, the probability of a chan-

nel opening increases in the presence of a specific chemical agent (the preferred agent can vary

between channels) [16, 20]. Ion channels allow passive ion movement across the cell membrane

when they are in the open state. By controlling the probability of a channel being open at any given

time, the gating stimulus determines the channel’s ability to allow ionic movement. In electrical
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terms, the gating condition (along with the channel’s inherent properties) controls the membrane

conductancefor an ion. Conductance (G) is measured in Siemens and is the reciprocal of resistance

(R = 1/G). The membrane conductance for a specific ion depends on the single open channel con-

ductance and the average number of open channels. The net membrane conductance is a function of

the individual ionic membrane conductances. The membrane ionic current through an ion channel

at a specific time depends on both the amount of gating condition present and the electrochemical

gradient providing the driving force.

The four most significant ions in neurophysiology are sodium (Na+), potassium (K+), calcium

(Ca+) and chloride (Cl−). These ions are present in different concentrations in both the intracellular

cytoplasm and the extracellular solution. An individual ionic membrane current is given by Ohm’s

Law, given by

IK+ = (GK+)(VK+), (A.1)

for theK+ example. The ionic current depends on both the membrane ionic conductance and the

driving force (voltage) applied to the ion species. A membrane electrical potential exerts force on

any charged ion. However, for each ion species, an intracellular and extracellular concentration im-

balance creates a chemical potential that also exerts a driving force. The electrochemical potential

provides the net ionic driving force. For example, if there is a higher concentration ofK+ inside

the cell than outside, the chemical gradient drawsK+ molecules out of the cell. If there is also a

negative membrane electrical potential, the negatively charged intracellular space will draw posi-

tively chargedK+ ions in. Given the intracellular and extracellular concentrations of an ion species,

there is a membraneequilibrium potentialwhere the electrical and chemical potentials are equal

and opposite, producing zero net ionic movement. The equilibrium potential is given by the Nernst
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equation [20], which (staying with theK+ ion example) is given by

EK+ =
RT

zF
ln
(

K+
out

K+
in

)
, (A.2)

whereR is the thermodynamic gas constant,T is the absolute temperature,z is the valence of the

ion,F is Faraday’s constant and
(

K+
out

K+
in

)
is the ratio of extracellular and intracellularK+ concentra-

tions. If Vm is the membrane electrical potential (typically in the range -(60–80) mV), then the net

driving force onK+ ions would be(Vm − EK+). Substituting back into equation (A.1), the total

K+ current is

IK+ = (GK+)(Vm − EK+). (A.3)

Given the intracellular and extracellular concentrations of any ion, the equilibrium potential for that

ion can be calculated using the Nernst equation (A.2). The membrane potential determines the ionic

driving force and Ohm’s law (A.3) calculates net ionic current. Sodium and potassium are the two

ions we will focus on presently. Typical neurons have much higher concentrations ofK+ inside

than out, and much higher concentrations ofNa+ outside than in.

When there is no signaling activity (no EPSP present), the membrane is said to be at rest.

In the resting state, the membrane electrical potential as well as intracellular and extracellu-

lar ionic concentrations are at steady-state values. In the resting state there is zero net current

across the membrane, as well as zero net ionic current for every ion species. Because there is

only one membrane electrical potential (Vm) but each ion will have it’s own equilibrium potential

(ENa+ , EK+ , ECa+ , ECl−), zero net ionic current can only be achieved for every species because

of active ion movement against the electrochemical gradient. Active pumps in the cell membrane

expend metabolic energy transporting sodium out of the cell and potassium in, both against their
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electrochemical gradients. The pumps are electrogenic, moving three sodium molecules out for

every two potassium molecules in, resulting in a net outward current [20]. A zero net ionic current

requires that the passive ionic currents must be equal and opposite the currents due to the active

pump. Mathematically this is stated as
INa+

IK+
= −3

2 . Requiring the net membrane current to be zero

means that the ionic currents must be equal and opposite as well,3
2(IK+) = 3

2(GK+)(Vm−EK+) =

−(INa+) = −(GNa+)(Vm − ENa+). Solving forVm, the resting membrane potential is given by:

Vm =
1.5(GK+)(EK+) + (GNa+)(ENa+)

1.5(GK+) + (GNa+)
. (A.4)

Equation (A.4) is a variation of the Goldman constant field equation [20]. Equation (A.4) can be

extended to include other ion species that contribute to the resting membrane potential.

A compound EPSP in the integrative region is a composite of individual EPSPs originating in

the input region (generally the dendritic tree). As described in section 2.1, these individual EPSPs

are generated by the presence of neurotransmitter released from an adjacent neuron’s presynaptic

terminal. The chemical neurotransmitter is the activating condition for ligand-gated ion channels

in the postsynaptic terminal. Each individual ion channel has a fixed conductance, but an elevated

gating condition increases the average number of open channels, thereby increasing the net mem-

brane conductance. Increased conductance allows more free ions to traverse the cell membrane,

contributing to the EPSP. The conductance change responsible for EPSP generation has been mea-

sured in crayfish SFs by Waldrop and Glantz, [26]. The measured relationship between increasing

membrane conductance and EPSPs is critical to the membrane noise model developed in section

4.2.1.
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Appendix B

Correlation structure of a non-stationary system

Consider a white Gaussian noise processW (n) ∼ N(0, σ2). The colored Gaussian noise pro-

cessC(n) is created by filteringW (n) by the non-stationary, first-order AR system described by

the difference equation

C(n) = a(n)C(n− 1) +W (n),

wherea(n) is a time-varying pole. The unit pulse response of this system is given by

h(n, k) =

(
n∏

l=k+1

a(l)u(n− k)

)
+ δ(n− k), (B.1)

the system response at samplen to a unit pulse at samplek, δ(k). It is important to note a notation

convention here. The product operator used in equation (B.1) is defined to be zero for any terms

where the lower index exceeds the upper index,
∏β
l=α x(l) = 0, α > β. The colored noise process

C(n) can be written in terms of the unit pulse response,

C(n) =
n∑

k=−∞
h(n, k)W (k).
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Making the variable substitutionl = n− k, the expression forC(n) simplifies to

C(n) =
∞∑
l=0

h(n, n− l)W (k)

=
∞∑
l=0

(
n∏

k=n−l+1

a(k)u(n− (n− l)) + δ(n− (n− l))

)
W (n− l)

= W (n) +
∞∑
l=1

(
n∏

k=n−l+1

a(k)W (n− l)

)
. (B.2)

The correlation function for the non-stationary system is found from the general definition of

correlation,Φ(n,m) = E [C(n)C(m)] . BecauseW (n) is a white noise process, its correlation

function isE[W (n)W (m)] = σ2δ(m − n). The white noise correlation function simplifies the

colored noise correlation function to:

E [C(n)C(m)] = σ2δ(m− n) + σ2

( ∞∑
l=1

n∏
k=n−l+1

a(k)δ(m− n+ l)

)

+ σ2

 ∞∑
q=1

m∏
r=m−q+1

a(r)δ(n−m+ q)


+ σ2

 ∞∑
l,q=1

n∏
k=n−l+1

a(k)
m∏

r=m−q+1

a(r)δ(n− l + q −m)


E [C(n)C(m)] = σ2δ(m− n) + σ2

 n∏
k=n−(n−m)+1

a(k)

+ σ2

 m∏
r=m−(m−n)+1

a(r)


+ σ2

 ∞∑
l=1

n∏
k=n−l+1

a(k)
m∏

r=m−(m−n+l)+1

a(r)

 .
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The correlation function for a non-stationary, first order AR system is therefore given by:

Φ(n,m) = σ2

(
δ(m− n) +

(
n∏

k=m+1

a(k)

)
+

(
m∏

r=n+1

a(r)

)

+

( ∞∑
l=1

n∏
k=n−l+1

a(k)
m∏

r=n−l+1

a(r)

))
.
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Appendix C

Analytic Analysis of Theoretical Spike Generator

Consider a system that takes a Gaussian random variableX̃ ∼ N(θ, σ̃2) as input, and produces

as output a Poisson random variableỸ with rate parameterλ = GX̃ (whereG is a deterministic

gain). We want to calculate a KL distance between two input Gaussian random variables with

different means, as well as the KL between the resulting output Poisson random variables. The KL

between two Gaussian random variables is straightforward, and described in section 4.2. Calculating

the output between two Poisson random variables is also trivial given the probability mass function

for the event counts.

The conditional probability mass function for̃Y is

P
Ỹ

(n|λ) =
(λT )ne−λT

n!
.

To simplify the notation, we setT = 1. BecauseX̃ is a Gaussian random variable,λ is also a

Gaussian random variable. To analytically calculate a KL distance, we must find theunconditional

probability mass function describing the output counts. The unconditional probability mass function

for the outputỸ is given by

P
Ỹ

(n) =
∫ ∞

0

λne−λ

n!
P

(GX̃)
(λ) dλ. (C.1)

The unconditional probability mass function simplifies by calculating theZ-transform of equation
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(C.1):
∞∑
n=0

(∫ ∞
0

λne−λ

n!
P

(GX̃)
(λ) dλ

)
zn =

∫ ∞
0

eλ(z−1)P
(GX̃)

(λ) dλ. (C.2)

The simplified equation (C.2) is the Laplace transform ofP
(GX̃)

(λ), evaluated ats = z − 1. The

Laplace transform of a probability density function is also known as the “moment generating func-

tion” [25] for the random variable. For a Gaussian, the moment generating function is

M
X̃

(s) = e

(
s2σ̃2

2
+sθ

)
. (C.3)

The simplification of equation (C.2) follows from equation (C.3) (withX̃ ∼ N(θ, σ̃2)):

Mλ(z − 1) = M
(GX̃)

(z − 1) = e

(
(z−1)2G2σ̃2

2
+G(z−1)θ

)
. (C.4)

The unconditional probability mass function describing output counts is the inverseZ-transform

of equation (C.4), which is very difficult to compute directly. The inverseZ-transform can also

be calculated by finding the Taylor series expansion around zero (using a symbolic mathematics

package). In practice only a finite number of terms in the probability mass function can be found,

but the number of terms can be chosen large enough so that the remaining probabilities are very

small and are not considered.

There is a detail in this derivation that must be noted. A Gaussian random variable technically

has infinite support. The rate parameterλ for the Poisson output is found by a simple scaling

of the input Gaussian random variable, butλ cannot be negative. Ifθ is large compared tõσ2, the

probability of a negative value for̃X will be very small. The corresponding probability of a negative

λ will be small enough to have no significant effect on our calculations.


