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Abstract

In a typical communications problem, Toeplitz matricesΦ arise when modeling the task of deter-
mining an unknown impulse responsea from a given probe signalφ. Whena is sparse, then wheneverΦ
formed from the probe signalφ satisfy the Restricted Isometry Property (RIP),a can be robustly recovered
from its measurements viaℓ1-minimization. In this paper, we derived the RIP for compressive Toeplitz
matrices whose number of rows of the matricesJ is much smaller than the number of columnsN . We
show thatJ should scale likeJ ∼ S2 log(N), whereS is the sparsity of the impulse response. While
this is marginally worse than the state-of-the-art scalingcurrently achieved in the literature, the novelty
of this work comes from making the relation between the Toeplitz matrix of interest to a block diagonal
matrix. The proof of the RIP then follows from using recent results on the concentration of measure
inequalities of block diagonal matrices, together with a standard covering-and-counting argument.

I. I NTRODUCTION

In a typical communications problem, faithful recovery of transmitted data depends on having an
accurate estimate of the communications channel. In many settings, the communications channel is
modeled by a linear filter and the impulse response is estimated by transmitting a known probe signal.
Specifically, denote the unknown impulse response bya ∈ R

N and we want to estimate this channel by
probing the system with a known signalφ ∈ R

P and examining the system outputỹ:

ỹ = φ ∗ a = Φlargea, (1)

whereΦlarge is an (N + P − 1) × N Toeplitz matrix given by

Φlarge =




φ1 0 0
...

... 0
φN · · · φ1
...

...
φP · · · φ(P−N+1)

0
...

...
0 0 φP




. (2)



In some applications, the channel can be assumed to be sparse(e.g., when there are only a few
multipath reflections), and resource constraints lead to thedesire to estimatea using either (1) as short
a probe signalφ as possible, or (2) as few measurements (i.e., values ofỹ) as possible. In the first case
(called thenon-compressivecase), one typically uses a short but random probe signalφ and measures
all the entries iñy for decoding the sparse channela. In the second case (called thecompressivecase),
one possible strategy is to again use a random (but not necessarily short) probe signalφ but now only
measure a subset of sizeJ ≤ N + P − 1 of the coefficients iñy. In this case, the resulting measurement
vectory ∈ R

J can be written asy = Φsmalla, whereΦsmall is a J × N matrix whose rows are a subset of
those fromΦlarge. In this work, we will focus our study on the compressive case, and in particular, we
will focus on the case whenJ ≤ N .

Work in the field of compressed sensing (CS) [1] has shown that sparse structure in signals can be
leveraged to improve estimation performance by using estimators that explicitly incorporate a sparse
signal model. In particular, the CS results make guaranteesabout robust recoverability of sparse signals
x from measurementsy = Φx when Φ satisfies the Restriced Isometry Property (RIP). We say that a
matrix Φ satisfy the RIP of orderS (and conditioningǫ) if for everyS-sparse signalx, we have

(1 − ǫ)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + ǫ)‖x‖2
2.

While the RIP property is hard to check in general for a specificmatrix, much of the recent excitement is
due to the fact thatJ×N matrices1 whose entries are i.i.d. random Gaussian variables are known to satisfy
the RIP with high probability if the number of measurementsJ scale linearly inS and logarithmically
in N . For these Gaussian random matrices, the proof that they satisfy RIP is particularly easy. It comes
from the fact that such matrices satisfy auniform concentration of measure inequality, i.e., for any fixed
signalx ∈ R

N and anyǫ ∈ (0, 1), a Gaussian matrixΦ having sizeJ × N satisfy

P
{∣∣‖Φx‖2

2 − ‖x‖2
2

∣∣ > ǫ‖x‖2
2

}
≤ 2e−Jǫ2 . (3)

One can then couple the above concentration inequality (3) with some elementary covering arguments
and union bounds [2, 3] to show that ifJ = O (S log(N/S)), then Φ satisfies the RIP with high
probability. Concentration of measure type results have also been used to prove the RIP for random
matrices with subexponential columns [4], and a concentration result of the form (3) has also been used
to probabilistically analyze the performance ofℓ1-minimization [5].

However, good RIP results for Toeplitz matrices (whereJ scales linearly withS) have been difficult
to achieve. The authors in [6] considered a probeφ made up of i.i.d. Gaussian random variables (or a
probe of i.i.d. Rademacher sequence in [7]), showing that ifP ∼ S2 log(N), then with high probability
the non-compressive matrixΦlarge satisfies the RIP. This quadratic dependence of the probe length on the
sparsity is worse than most cutting edge CS results (where the number of measurements scales linearly
with the sparsity). The work in [8] also considers convolution of a random probeφ ∈ R

P with an
S-sparse channela ∈ R

N whereP > N , i.e., there is an added restriction on the probe length being
longer than the channel impulse response. The main result there states that the resulting non-compressive
Toeplitz matrixΦlarge satisfies the RIP with high probability ifS ∼ N/ log5(N). There have been several
other authors who have proved equivalent results (i.e., quadratic scaling ofJ with the sparsityS) for
contiguous (measurements taken from̃y are contiguous) compressive Toeplitz matrices [6, 7, 9, 10]and
non-contiguous compressive Toeplitz matrices [11]. The best RIP result so far has been achieved by
the authors of [12]. However, they used much heavier technical machinery, essentially bounding the
extrema of a random process, and established an RIP bound forpartial circulant matrices requiring

1The choice ofJ instead ofM to denote the number of row in the matrixΦ is so as to be consistent with our notations of
block diagonal matrices as we will see in section II.
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only (S log N)3/2 measurements. We remark that other papers, for example in [13], avoids displaying
the RIP for (compressive) toeplitz matrices all together but instead gives recoverability guarantees for
probabilistically chosen sparse signals.

This paper establishes the RIP for compressive Toeplitz matrices with a number of measurements
J proportional toS2 log N . This result matches the quadratic scaling with sparsity established in most
of the literature except for [12]. Despite not achieving state-of-the-art results, we feel that this paper
contains 2 novel contributions. First, the tools that we use to derive the RIP is relatively simple. This
simplicity is the result of the observation that compressive Toeplitz matrices are in fact related to block
diagonal matrices. This relation allows us to use a recent result on the concentration of measure inequality
afforded by block diagonal matrices [14] to generate a uniform concentration of measure inequality (for
sparse signals) for our compressive Toeplitz matrices. An application of the usual covering-and-counting
argument will then get us to the RIP. Second, this paper provides a unified framework for contiguous
and non-contiguous sampling of the measurementsỹ. This is possible because of the ambivalence of the
concentration of measure result to the different sampling methods.

II. CONCENTRATION OFMEASURE FORREPEATEDBLOCK DIAGONAL MATRICES

The result of this paper rely on a recent work on the concentration of measure for block diagonal
matrices [14]. The study of block diagonal matrices arises when input data may be divided naturally
into discrete subsections (or blocks), with each block acquired via a local measurement operator. In
such scenarios, a signalx ∈ R

NJ is partitioned intoJ blocks x1, x2, . . . , xJ ∈ R
N , and for eachj ∈

{1, 2, . . . , J}, we suppose that a local measurement operatorΦj : R
N → R

Mj collects the measurements
yj = Φjxj . Concatenating all of the measurements into a vectory ∈ R

P

j
Mj , we then have




y1

y2
...

yJ




︸ ︷︷ ︸
y: (

P

j
Mj)×1

=




Φ1

Φ2

...
ΦJ




︸ ︷︷ ︸
Φ: (

P

j
Mj)×NJ




x1

x2
...

xJ


 .

︸ ︷︷ ︸
x:NJ×1

(4)

In cases such as these, we see that the overall measurement operatorΦ will have a characteristic block
diagonal structure. In some scenarios, the local measurement operatorΦj may be unique for each block,
and we say that the resultingΦ has aDistinct Block Diagonal(DBD) structure. In other scenarios it may
be appropriate or necessary to repeat a single operator across all blocks (such thatΦ1 = Φ2 = · · · = ΦJ );
we call the resultingΦ a Repeated Block Diagonal(RBD) matrix. Our work here will focus on RBD
matrices.

Before stating the concentration of measure for RBD matrices, let us define the requisite notation. Given
a signalx ∈ R

NJ partitioned intoJ blocks of lengthN , we define theJ × N matrix of concatenated
signal blocks

X := [x1 x2 · · · xJ ]T , (5)

and we denote the non-negative eigenvalues of theN ×N symmetric matrixA = XT X as{λi}N
i=1. We

let λ = λ(x) := [λ1, . . . , λN ]T ∈ R
N be the vector composed of these eigenvalues. We letM := M1 =

M2 = · · · = MJ denote the number of measurements to be taken in each block. Finally, for a given
signalx ∈ R

NJ and per-block measurement rateM , we define the quantities

Λ2(x, M) :=
M‖λ‖2

1

‖λ‖2
2

and Λ∞(x, M) :=
M‖λ‖1

‖λ‖∞
. (6)
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Equipped with this notation, the result concerning the concentration of RBD matrices is as follows.

Theorem II.1. Supposex ∈ R
NJ . Let Φ̃ be a randomM × N matrix populated with i.i.d. zero-mean

Gaussian entries having varianceσ2 = 1
M , and letΦ be anMJ ×NJ block diagonal matrix as defined

in (4), with Φj = Φ̃ for all j. Then

P≤

{∣∣‖Φx‖2
2 − ‖x‖2

2

∣∣ > ǫ‖x‖2
2

}
2 exp

{
−C1 min

(
C2

2ǫ2Λ2(x, M), C2ǫΛ∞(x, M)
)}

, (7)

whereC1 and C2 are absolute constants.

From (7), one can deduce that the concentration probability of interest decays exponentially as a
function of ǫ2Λ2(x, M) in the case where0 ≤ ǫ ≤ Λ∞(x,M)

C2Λ2(x,M) and exponentially as a function of

ǫΛ∞(x, M) in the case whereǫ > Λ∞(x,M)
C2Λ2(x,M) . Thus, the concentration rate depends explicitly on the

signalx being measured. The interested reader is referred to [14] forfurther discussions on this signal-
dependent concentration rates.

III. RIP FOR TOEPLITZ MATRICES

Interestingly, the concentration results of repeated block diagonal matrices can be used as an analytic
tool to prove the RIP for sub-sampled compressive and non-compressive Toeplitz measurement matrices
that arise in problems such as channel sensing [6, 7, 9–11, 13, 15–17]. While the Toeplitz structure in the
convolution matrix shown in (2) does not immediately appearto fall into the block diagonal structure
detailed in our concentration results, careful examination reveals that it can be written in such a format.
Consider that every output value ofỹ is the result of multiplying the same probe vectorφ by a version
of the impulse responsea that has been shifted by an amount depending on the measurement index.
The intuition here is that this computation can be written as an RBD matrix with each block equal to
the probeφT (i.e., M = 1), multiplied by a signalx where each blockxk is a time-reversed, shifted,
and windowed version of the impulse responsea. To make things concrete, supposeJ ≤ N and let
i1, i2, · · · , iJ denote the indices of the measured coefficients ofỹ. For simplicity, we assume that the
probe lengthP ≥ N +J −1 and thati1, i2, · · · , iJ ∈ [N, P ], but note that we will not assume that these
indices are contiguous.2 We define blockxk corresponding to the measurement indexik by appropriately
shifting and zero padding the time-reversed impulse response:

xk =
[
~0(ik−N) aN . . . a1 ~0(P−ik)

]T
, (8)

where we denote~0L as a row vector ofL zeros. With this definition, we now see thaty can be written
as the multiplication of aJ × PJ RBD matrix Φ (constructed with the1 × P matricesΦk = φT along
the main diagonal) times a length-PJ signalx = [xT

1 xT
2 . . . xT

J ]T with J blocks:

y = Φsmalla = Φx. (9)

The following lemma establishes the concentration of measure result for the subsampled output of
the convolution operation, and follows directly from applying Theorem II.1 to the current problem
formulation.

Lemma III.1. Let a ∈ R
N be an arbitrary vector,φ ∈ R

P be a random vector with i.i.d. Gaussian
entries having mean zero and varianceσ2 = 1

J with J ≤ N , and ỹ be the convolution ofa and φ as

2The assumptions on the probe length and index locations ensure that eachmeasurement iny depends on all entries ofa.
We make these assumptions merely to simplify the subsequent computation of the value around which‖Φsmalla‖

2

2 concentrates;
removing them would change only the point of concentration.
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defined in(2). Suppose thatP ≥ J + N − 1 and let i1, i2, · · · , iJ ∈ [N, P ] denote the indices of the
available measurements from this convolution, such thatyk = ỹik

. Also, defineX as a concatenation of
signal blocks as in(5), with the individual signal blocksxk (depending on the measurement indicesik)
defined as in(8). Then, fory = Φsmalla (see(9)), E

{
‖y‖2

2

}
= ‖a‖2

2, and forC1, C2 appearing in Theorem
II.1,

P
{∣∣‖y‖2

2 − ‖a‖2
2

∣∣ > ǫ‖a‖2
2

}
≤ 2 exp

(
−C1J min(C2

2ǫ2, C2ǫ)

‖λ‖∞/‖a‖2
2

)
, (10)

where {λi} are the eigenvalues ofXXT and λ = [λ1 λ2 · · · λJ ]T . If we further suppose thata is
S-sparse, then

P
{∣∣‖y‖2

2 − ‖a‖2
2

∣∣ > ǫ‖a‖2
2

}
≤ 2 exp

(
−C1J min(C2

2ǫ2, C2ǫ)

S

)
. (11)

Proof: See Appendix A.
Lemma III.1 basically states that arbitrary vectorsa can have favorable concentration properties when

multiplied by compressive Toeplitz matrices. We note that (10) relates the probability of concentration for
a vectora ∈ R

N to the quantity‖λ‖∞ (which is defined in terms ofa). If the vectora is S-sparse, it is
possible to derive a useful upper bound for‖λ‖∞ and this is shown in (11). This analysis establishes that
whena is a sparse vector measured by a compressive Toeplitz matrix, the concentration exponent can be
stated simply in terms of the sparsityS and number of measurementsJ , making the concentration bound
suitable as an analysis tool for establishing results in theCS literature. In particular, we can use this result
to prove the RIP for compressive Toeplitz matrices. Using standard covering arguments and following
the same steps as in [2], we arrive at the following theorem establishing RIP for the compressive Toeplitz
matrices relevant for the channel sensing problem.

Theorem III.1 (RIP). SupposeΦsmall ∈ R
J×N is a compressive Toeplitz matrix as defined in(9) (with

either contiguous or non-contiguous measurement indices). Then there exist constantsC3, C4 such that
if J ≥ C3S

2 log(N/S), Φsmall will satisfy the RIP of orderS with probability at least1 − 2 exp(−C4J).

The theorem above establishes the RIP for compressive Toeplitz matrices with a number of measure-
mentsJ proportional toS2 log N . As discussed in Section I, this result matches the quadraticscaling with
sparsity established in most of the literature except for [12], which had to resort to heavy mathematical
machinery for its proof. The novelty of this paper comes from,first, its simplicity, as can be observed
from the simple concentration of measure bound in (10) and in(11), and second, its unified framework
for both contiguous and non-contiguous measurements, as can be seen in Lemma III.1.

IV. EXTENSIONS

Using the same general approach taken in this paper, we can make a similar statement about the RIP
of non-compressive Toeplitz matrices. In such cases, one can guarantee the RIP with high probability by
taking P proportional toS2 log N . This result is comparable to the results in [6, 10] (but uses arguably
simpler machinery); it is less favorable than the state-of-the-art result ofP ∼ S log5 N implied by [16].

APPENDIX A
PROOF OFLEMMA III.1

To simplify the proof, it will be beneficial to use operator matrices to define the shifting and windowing
operations creating the signal blocks. Specifically, letei denote theith canonical basis vector ofRN+P−1
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and define the(N + P − 1) × J matrix R = [ei1 ei2 · · · eiJ
] that removes measurements from the

convolution operation to isolate just the selected measurements such thaty = RT ỹ. Furthermore, define
the windowing matrixW =

[
eN . . . e(N+P−1)

]T
to be theP × (N + P − 1) matrix that keeps only

the lastP coefficients of a length-(N + P − 1) vector. Finally, note that we can now write the matrix of
concatenated signal blocksX ∈ R

J×P defined in (5) asXT = WAR. Here,A is an(N +P −1)×(N +
P − 1) circulant matrix whose first column is̃a := [aN aN−1 · · · a1 ~0P−1]

T and whose subsequent
columns are circularly shifted in the downward direction.

Proof: To apply Theorem II.1 directly, we first suppose the entries of the random probeφ have
varianceσ2 = 1 (sinceM = 1 here). In this case, we haveE

{
‖y‖2

2

}
= ‖x‖2

2 = J‖a‖2
2, and Theorem II.1

implies that

P
{∣∣‖y‖2

2 − J‖a‖2
2

∣∣ > ǫJ‖a‖2
2)

}
≤ 2 exp

(
−C1 min

(
C2

2ǫ2‖λ‖2
1

‖λ‖2
2

,
C2ǫ‖λ‖1

‖λ‖∞

))
. (12)

SinceJ ≤ N , the nonzero eigenvalues ofXXT equal those ofXT X, and so we could equivalently define
{λj} as the eigenvalues ofXXT . Note thatXXT is a symmetric matrix, and so all of its eigenvalues
{λi} are non-negative. Also, all of the diagonal entries ofXXT are equal to‖a‖2

2. Consequently, it
follows that‖λ‖1 =

∑J
i=1 |λi| = tr(XXT ) = J‖a‖2

2. Using the norm inequality‖λ‖2
2 ≤ ‖λ‖1‖λ‖∞, we

have ‖λ‖2
1

‖λ‖2
2
≥ J

‖λ‖∞/‖a‖2
2

and it is easy to see that‖λ‖1

‖λ‖∞

= J
‖λ‖∞/‖a‖2

2
.

By plugging these inequalities into (12), we obtain the probabilities specified in (10). Finally, we note
that

∣∣‖y‖2
2 − J‖a‖2

2

∣∣ > ǫJ‖a‖2
2 ⇐⇒

∣∣∣‖(1/
√

J)Φsmalla‖2
2 − ‖a‖2

2

∣∣∣ > ǫ‖a‖2
2,

and so if we suppose the entries of the random probeφ actually have varianceσ2 = 1
J , we complete our

derivation of (10).
Now, suppose thata has no more thanS nonzero components. Then letting‖D‖2 denote the standard

operator norm of a matrixD (i.e., the largest singular value ofD), we have‖λ‖∞ = ‖XXT ‖2 = ‖X‖2
2 ≤

‖R‖2
2‖A‖2

2‖W‖2
2 = ‖A‖2

2 = ‖AT ‖2
2, since the largest singular values of bothW and R are 1. Because

AT is a circulant matrix, its eigenvalues are equal to the un-normalized discrete Fourier transform (DFT)
of its first row ãT . Denoting the un-normalized DFT matrix byF ∈ C

(N+P−1)×(N+P−1), we see that
‖AT ‖2 = ‖F ãT ‖2

∞. Expanding on this, we have:

‖F ãT ‖2
∞ = max

p=1,··· ,N+P−1

∣∣∣∣∣∣

∑

k=1,··· ,N+P−1

ãke
j 2π(k−1)(p−1)

N+P−1

∣∣∣∣∣∣

2

≤ max
p=1,··· ,N+P−1




∑

k=1,··· ,N+P−1

|ãk|




2

= ‖a‖2
1

≤ S‖a‖2
2

Thus,‖λ‖∞ ≤ S‖a‖2
2, which implies that a concentration rate that holds for anyS-sparse vectora is

P
{∣∣‖y‖2

2 − ‖a‖2
2

∣∣ > ǫ‖a‖2
2

}
≤ 2 exp

(
−C1J min(C2

2ǫ2, C2ǫ)

S

)
.
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