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Abstract

In a typical communications problem, Toeplitz matricesarise when modeling the task of deter-
mining an unknown impulse respongdrom a given probe signat. Whena is sparse, then whenevér
formed from the probe signal satisfy the Restricted Isometry Property (Rl?%an be robustly recovered
from its measurements vig-minimization. In this paper, we derived the RIP for compies Toeplitz
matrices whose number of rows of the matrices&s much smaller than the number of columis We
show thatJ should scale like/ ~ S%log(N), whereS is the sparsity of the impulse response. While
this is marginally worse than the state-of-the-art scatingently achieved in the literature, the novelty
of this work comes from making the relation between the Titephatrix of interest to a block diagonal
matrix. The proof of the RIP then follows from using recensuis on the concentration of measure
inequalities of block diagonal matrices, together with andgiard covering-and-counting argument.

. INTRODUCTION

In a typical communications problem, faithful recovery oértsmitted data depends on having an
accurate estimate of the communications channel. In mattingg® the communications channel is
modeled by a linear filter and the impulse response is estiiageransmitting a known probe signal.
Specifically, denote the unknown impulse response lsyR" and we want to estimate this channel by
probing the system with a known signale R” and examining the system outpgit

Y= ¢*a= Paga, Q)
where®,,. is an(N + P — 1) x N Toeplitz matrix given by
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In some applications, the channel can be assumed to be sfagsewhen there are only a few
multipath reflections), and resource constraints lead taldsire to estimate using either (1) as short
a probe signal as possible, or (2) as few measurements (i.e., valugd af possible. In the first case
(called thenon-compressivease), one typically uses a short but random probe sigreatd measures
all the entries iny for decoding the sparse channelln the second case (called thempressivease),
one possible strategy is to again use a random (but not redgsshort) probe signap but now only
measure a subset of size< N + P — 1 of the coefficients iny. In this case, the resulting measurement
vectory € R’ can be written ag = ®g.,a, Wwhered,,,, is a.JJ x N matrix whose rows are a subset of
those from®,,. In this work, we will focus our study on the compressive ¢cas® in particular, we
will focus on the case whed < N.

Work in the field of compressed sensing (CS) [1] has shown thatsepstructure in signals can be
leveraged to improve estimation performance by using edtin that explicitly incorporate a sparse
signal model. In particular, the CS results make guarardbesit robust recoverability of sparse signals
x from measurementg = &z when & satisfies the Restriced Isometry Property (RIP). We say that a
matrix ¢ satisfy the RIP of ordef (and conditioninge) if for everyS-sparse signat, we have

(1= 9llzl3 < 123 < (1 + ¢)l|]3-

While the RIP property is hard to check in general for a spemnifidrix, much of the recent excitement is
due to the fact thaf x NV matrice$ whose entries are i.i.d. random Gaussian variables arerktmsatisfy
the RIP with high probability if the number of measuremesitscale linearly inS and logarithmically
in N. For these Gaussian random matrices, the proof that thesfysRIP is particularly easy. It comes
from the fact that such matrices satisfyiaiform concentration of measure inequalitye., for any fixed
signalz € RY and anye € (0,1), a Gaussian matri® having sizeJ x N satisfy

P{[l|®x] - [lz]3] > ellz3} < 2¢77¢". (3)

One can then couple the above concentration inequality (@) some elementary covering arguments
and union bounds [2,3] to show that if = O (Slog(N/S)), then ® satisfies the RIP with high
probability. Concentration of measure type results hage &leen used to prove the RIP for random
matrices with subexponential columns [4], and a conceptraesult of the form (3) has also been used
to probabilistically analyze the performance @fminimization [5].

However, good RIP results for Toeplitz matrices (whéracales linearly withS) have been difficult
to achieve. The authors in [6] considered a prgbmade up of i.i.d. Gaussian random variables (or a
probe of i.i.d. Rademacher sequence in [7]), showing tha&t i S?log(NN), then with high probability
the non-compressive matrik,. satisfies the RIP. This quadratic dependence of the probehlemgthe
sparsity is worse than most cutting edge CS results (wheredimber of measurements scales linearly
with the sparsity). The work in [8] also considers convolatiof a random probe) € RY with an
S-sparse channel ¢ RY where P > N, i.e., there is an added restriction on the probe lengthgobein
longer than the channel impulse response. The main resuodt gi@es that the resulting non-compressive
Toeplitz matrix®,,,, satisfies the RIP with high probability  ~ N/log®(N). There have been several
other authors who have proved equivalent results (i.e.dmqig scaling ofJ with the sparsityS) for
contiguous (measurements taken frgnare contiguous) compressive Toeplitz matrices [6, 7, 9@
non-contiguous compressive Toeplitz matrices [11]. The B4R result so far has been achieved by
the authors of [12]. However, they used much heavier tea@hmtachinery, essentially bounding the
extrema of a random process, and established an RIP bounpaftal circulant matrices requiring

The choice ofJ instead of M to denote the number of row in the matrdxis so as to be consistent with our notations of
block diagonal matrices as we will see in section Il.



only (Slog N)3/2 measurements. We remark that other papers, for example3in 4%oids displaying
the RIP for (compressive) toeplitz matrices all together instead gives recoverability guarantees for
probabilistically chosen sparse signals.

This paper establishes the RIP for compressive Toeplitzioceatiwith a number of measurements
J proportional toS?log N. This result matches the quadratic scaling with sparsitgldished in most
of the literature except for [12]. Despite not achievingtestaf-the-art results, we feel that this paper
contains 2 novel contributions. First, the tools that we usédrive the RIP is relatively simple. This
simplicity is the result of the observation that compressieeplitz matrices are in fact related to block
diagonal matrices. This relation allows us to use a recenttres the concentration of measure inequality
afforded by block diagonal matrices [14] to generate a unifgoncentration of measure inequality (for
sparse signals) for our compressive Toeplitz matrices. gplieation of the usual covering-and-counting
argument will then get us to the RIP. Second, this paper pesval unified framework for contiguous
and non-contiguous sampling of the measuremgnighis is possible because of the ambivalence of the
concentration of measure result to the different samplirghods.

Il. CONCENTRATION OFMEASURE FORREPEATEDBLOCK DIAGONAL MATRICES

The result of this paper rely on a recent work on the conceotraif measure for block diagonal
matrices [14]. The study of block diagonal matrices ariseerwmput data may be divided naturally
into discrete subsections (or blocks), with each block aeduvia a local measurement operator. In

such scenarios, a signale RN’ is partitioned into.J blocks z1,zs,...,z; € RY, and for eachj
{1,2,...,J}, we suppose that a local measurement operfarR™ — R collects the measurements
y; = ®;z;. Concatenating all of the measurements into a vegterR>: %, we then have
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In cases such as these, we see that the overall measureneeatoof will have a characteristic block
diagonal structure. In some scenarios, the local measunteoperator®; may be unique for each block,
and we say that the resultin has aDistinct Block DiagonalDBD) structure. In other scenarios it may
be appropriate or necessary to repeat a single operat@sagiidlocks (such thab; = & = --- = & );
we call the resultingd a Repeated Block DiagongRBD) matrix. Our work here will focus on RBD
matrices.

Before stating the concentration of measure for RBD matrilet us define the requisite notation. Given
a signalz € R/ partitioned intoJ blocks of lengthN, we define the/ x N matrix of concatenated
signal blocks

X =z @y - ay), (5)
and we denote the non-negative eigenvalues ofhe N symmetric matrixA = X7 X as{\;} . We
let A = A(z) := [\1,...,An]" € RN be the vector composed of these eigenvalues. Wa/let= M; =
M, = --- = M; denote the number of measurements to be taken in each blowdlyi-ifor a given
signalz € RV’ and per-block measurement raté, we define the quantities

M||A|I? M||A
Ag(z, M) := | !1 and A (z, M) := 1My (6)
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Equipped with this notation, the result concerning the catre¢ion of RBD matrices is as follows.

Theorem 11.1. Supposer € RV, Let ® be a random)M x N matrix populated with i.i.d. zero-mean
Gaussian entries having varianeé = ﬁ and let® be anMJ x NJ block diagonal matrix as defined
in (4), with ®; = @ for all 5. Then

P<{|[|®x]5 — [|=]5] > ellz]3} 2 exp {—C1 min (C3e*Ag(z, M), Coeloo(z, M))}, 7)
where(C; and Cy are absolute constants.

From (7), one can deduce that the concentration probabifitinterest decays exponentially as a

function of e2A5(x, M) in the case wherd) < e < % and exponentially as a function of
eAo(z, M) in the case where > % Thus, the concentration rate depends explicitly on the

signal x being measured. The interested reader is referred to [14fdrer discussions on this signal-
dependent concentration rates.

IIl. RIP FORTOEPLITZ MATRICES

Interestingly, the concentration results of repeatedlbltiagonal matrices can be used as an analytic
tool to prove the RIP for sub-sampled compressive and nompoessive Toeplitz measurement matrices
that arise in problems such as channel sensing [6, 7, 9—115327]. While the Toeplitz structure in the
convolution matrix shown in (2) does not immediately appiafall into the block diagonal structure
detailed in our concentration results, careful examimat®veals that it can be written in such a format.
Consider that every output value gfis the result of multiplying the same probe vectpby a version
of the impulse response that has been shifted by an amount depending on the measurémiex.
The intuition here is that this computation can be written msR8D matrix with each block equal to
the probeg’ (i.e., M = 1), multiplied by a signak: where each block:;, is a time-reversed, shifted,
and windowed version of the impulse responselo make things concrete, suppoge< N and let
i1,12,- -+ ,1y denote the indices of the measured coefficientg.ofFor simplicity, we assume that the
probe length? > N + J — 1 and thatiy, is, - - - ,i; € [V, P], but note that we will not assume that these
indices are contiguousWe define blocks;, corresponding to the measurement indgby appropriately
shifting and zero padding the time-reversed impulse resgion

. . T
g = |0—n) an ... a1 Op_)| (8)

where we denoté;, as a row vector of. zeros. With this definition, we now see thatan be written
as the multiplication of a/ x PJ RBD matrix ® (constructed with the x P matrices®; = ¢’ along
the main diagonal) times a lengf?J signalz = [z 23 ... 2T]T with J blocks:

y= q)smalla = ®x. (9)

The following lemma establishes the concentration of measesult for the subsampled output of
the convolution operation, and follows directly from apgply Theorem 1.1 to the current problem
formulation.

Lemma I11.1. Leta € RN be an arbitrary vectorgp € R” be a random vector with i.i.d. Gaussian
entries having mean zero and varianeé = % with J < N, and y be the convolution of. and ¢ as

>The assumptions on the probe length and index locations ensure thameashrement iy depends on all entries af.
We make these assumptions merely to simplify the subsequent computitiealue around whichj®smaia||3 concentrates;
removing them would change only the point of concentration.
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defined in(2). Suppose thaP > J + N — 1 and letiy,iq, -+ ,i; € [N, P| denote the indices of the
available measurements from this convolution, such that y;, . Also, defineX as a concatenation of
signal blocks as in(5), with the individual signal blocks; (depending on the measurement indi¢gs
defined as ir8). Then, fory = ®,..a (see(9)), E{||ly||l3} = [|lal3, and forCy, C; appearing in Theorem
.1,

C1J min(C2e?, Coe
Pl - lalB] > clal) < 2exp (- LR 2 (10)
[Alloo/llall3
where {);} are the eigenvalues ok X7 and A = [A\; Ay --- Aj]7. If we further suppose that is
S-sparse, then
C1J min(C2€%, Cye
Pl - lalB] > calg) < 2exp (- AT ECCY )

Proof: See Appendix A.

Lemma lll.1 basically states that arbitrary vectarsan have favorable concentration properties when
multiplied by compressive Toeplitz matrices. We note tii#)¥) (elates the probability of concentration for
a vectora € R to the quantity||\||o (which is defined in terms af). If the vectora is S-sparse, it is
possible to derive a useful upper bound fiof| ., and this is shown in (11). This analysis establishes that
whena is a sparse vector measured by a compressive Toeplitz midieixconcentration exponent can be
stated simply in terms of the sparsifyand number of measurementsmaking the concentration bound
suitable as an analysis tool for establishing results ima8diterature. In particular, we can use this result
to prove the RIP for compressive Toeplitz matrices. Usiramdard covering arguments and following
the same steps as in [2], we arrive at the following theoretabdéishing RIP for the compressive Toeplitz
matrices relevant for the channel sensing problem.

Theorem I11.1 (RIP). Supposed.,., € R7*Y is a compressive Toeplitz matrix as defined9) (with
either contiguous or non-contiguous measurement indicE®n there exist constan{s;, C4 such that
if J > C35%1og(N/S), ®ema Will satisfy the RIP of orderS with probability at leastl — 2 exp(—Cy.J).

The theorem above establishes the RIP for compressive Toepditrices with a number of measure-
ments.J proportional toS? log N. As discussed in Section I, this result matches the quadsediing with
sparsity established in most of the literature except f@j,[tvhich had to resort to heavy mathematical
machinery for its proof. The novelty of this paper comes frdinst, its simplicity, as can be observed
from the simple concentration of measure bound in (10) and 1), and second, its unified framework
for both contiguous and non-contiguous measurements,rabe&aeen in Lemma IIl.1.

IV. EXTENSIONS

Using the same general approach taken in this paper, we ck& asimilar statement about the RIP
of non-compressive Toeplitz matrices. In such cases, onggarantee the RIP with high probability by
taking P proportional toS?log N. This result is comparable to the results in [6,10] (but usgsiably
simpler machinery); it is less favorable than the statéhefart result ofP ~ Slog® N implied by [16].

APPENDIX A
PrRoOOF OFLEMMA [11.1

To simplify the proof, it will be beneficial to use operator mees to define the shifting and windowing
operations creating the signal blocks. Specificallycledlenote the™ canonical basis vector @V +-—1
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and define thd N + P — 1) x J matrix R = [e;, e;, --- e;,] that removes measurements from the
convolution operation to isolate just the selected measengs such thay = R”7y. Furthermore, define
the windowing matrixiV = [ex ... e(N+p_1)]T to be theP x (N + P — 1) matrix that keeps only
the lastP coefficients of a length/{ + P — 1) vector. Finally, note that we can now write the matrix of
concatenated signal blocké ¢ R7*" defined in (5) as\” = WAR. Here,Ais an(N+P—1) x (N +
P — 1) circulant matrix whose first column i:= [ay an—1 -+ a; 6p,1]T and whose subsequent
columns are circularly shifted in the downward direction.

Proof: To apply Theorem Il.1 directly, we first suppose the entrieshef tandom probe> have
variances? = 1 (sinceM = 1 here). In this case, we ha®®{ ||y||3} = ||z|3 = J||a||3, and Theorem II.1
implies that

. C2e2|I\||2 Cyel| N
Pl ~ JlalB] > eslal)} < 2exp (~crmin (2, SAA)) g
2 o
SinceJ < N, the nonzero eigenvalues &fX 7 equal those of{” X, and so we could equivalently define
{)\;} as the eigenvalues of X7'. Note thatX X7 is a symmetric matrix, and so all of its eigenvalues
{\i} are non-negative. Also, all of the diagonal entries)0X’ are equal to|ja|3. Consequently, it
follows that|[A[|; = 327, |\i| = tr(X XT) = J||a||3. Using the norm inequality A3 < [[A[|1][ ]|, WE
IIAIE J it I _ J
have 3} > -y and it is easy to see thagy ™ — P . |
By plugging these inequalities into (12), we obtain the ies specified in (10). Finally, we note
that

lyl3 = Jllal3] > eJ|lall = ‘Il(l/\/j)ésmauallg - IIaH%‘ > ellall3,

and so if we suppose the entries of the random prpletually have variance? = % we complete our
derivation of (10).

Now, suppose that has no more thas' nonzero components. Then lettifi@ ||, denote the standard
operator norm of a matrip (i.e., the largest singular value &), we havel|A||o = [|[ X X T2 = || X3 <
| RI3|IA|2|W % = ||Al|3 = ||AT|3, since the largest singular values of bdth and R are 1. Because
AT is a circulant matrix, its eigenvalues are equal to the umaadized discrete Fourier transform (DFT)
of its first row a’. Denoting the un-normalized DFT matrix by € C(N+P=Dx(N+P-1) "we see that
|AT||? = ||[Fa®||%,. Expanding on this, we have:

¥ 2= (-1
T D DR e
L k=1, N+P—1

IN

s vl ) Z k|
Pl NP G TN P

= |l
< Sllal3
Thus, |\« < S||al|3, which implies that a concentration rate that holds for &Rgparse vecton is
_ClJmin(szeQ, Cge)>
3 :

P{|llyll3 - lall3] > ellal3} < 2exp (
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