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Abstract— Sparse approximation is an optimization program
that produces state-of-the-art results in many applications in
signal processing and engineering. To deploy this approachin
real-time, it is necessary to develop faster solvers than are
currently available in digital. The Locally Competitive Al gorithm
(LCA) is a dynamical system designed to solve the class of
sparse approximation problems in continuous time. But before
implementing this network in analog VLSI, it is essential to
provide performance guarantees. This paper presents new results
on the convergence of the LCA neural network. Using recently-
developed methods that make use of the Łojasiewicz inequality
for nonsmooth functions, we prove that the output and state
trajectories converge to a single fixed point. This improveson
previous results by guaranteeing convergence to a singleton even
when the optimization program has infinitely many and non-
isolated solution points.

I. I NTRODUCTION

SPARSE approximation decomposes a signaly ∈ R
M in

an overcomplete dictionaryΦ ∈ R
M×N , with M � N ,

by constraining the approximation coefficientsa ∈ R
N to be

sparse (i.e. to have only a few non-zero entries). The Locally
Competitive Algorithm (LCA) introduced in [1] is a neural
network designed to solve this problem and is defined by the
following differential equation:

τu̇(t) = −u(t)− (ΦTΦ− I) a(t) + ΦT y

a(t) = Tλ(u(t))
. (1)

The LCA network (whose architecture is shown in Fig. 1)
takes as input the vectorΦT y. The components of the input
drive the vectoru(t), which contains the state variablesun(t)
for n = 1, . . . , N . The columns of the matrixΦ can be viewed
as elements of the dictionary. We assume that they have unit
norm and denote them byΦn ∈ R

M for n = 1, . . . , N .
The outputs of the system are thean(t) for n = 1, . . . , N .
They are generated by the nonlinear activation functionTλ(·),
which is applied entry-wise to the state vectoru(t). Each
output generates a feedback into each state. The strength
of the feedback depends on the level of output activity and
on the strength of the inner product between two dictionary
elements. The values of these inner products are represented
by the interconnection matrixW = ΦTΦ − I. This structure
ensures that two non-zero coefficients do not carry the same
information about the signal. The time constantτ depends on
the physical solver; for our analysis, we takeτ = 1 without
loss of generality.
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Fig. 1. Block diagram of the LCA network. The stateu(t) is driven by
the projection of the signaly onto each of theN dictionary elementsΦn.
The state produces the outputa(t) through the activation functionTλ(·). The
output is then weighted by the interconnection matrixW and fed back.

The LCA is a type of Hopfield-style network [2], and
as such a Lyapunov function can be designed for it. An
appropriate Lyapunov function for (1) is the typical objective
function used to solve sparse approximation problems:

V (a) =
1

2
‖y − Φa‖22 + λ

N∑

n=1

C(an). (2)

The first term is the mean-squared error of the approximation,
while the second termC(·) is a cost penalty on the solution
that encourages sparsity. The parameterλ is a tradeoff between
these two objectives. The most famous sparse approximation
program is `1-minimization, also known as Basis Pursuit
Denoising. This optimization program plays an important
role in signal processing, and in particular in Compressed
Sensing, since it allows to recover a sparse signal from many
fewer measurements than traditional approaches [3]. For this
program, the cost functionC(·) is the absolute value, resulting
in an `1-norm penalty ona.

Theoretical guarantees on system performance (e.g., conver-
gence, convergence speed, etc.) are an important counterpart to
ongoing work implementing the LCA in analog circuitry [7],
[8]. To this end, in a previous paper [4], we showed that if the
activation functionTλ(·) and the cost functionC(·) satisfy a
certain relationship, the fixed points of (1) correspond to the
critical points of (2). In addition, using a Lyapunov approach
and under certain conditions on the activation function, we
showed that the outputs of the network converge to the set of
fixed points. When the solution is unique or when the objective
functionV (·) is strictly convex, this implies convergence to a
singleton. However, this result is insufficient to prove that the
outputs converge to a single point when solutions of (2) are



not isolated. Under some additional conditions on the problem
parameters (such as the eigenvalues of certain submatricesof
ΦTΦ), we also proved that the LCA converges to a single
fixed point with exponential rate of convergence [4].

Recently, several papers have developed a new technique
based on the Łojasiewicz inequality [5]. Using this inequality,
the output of certain networks can be shown to converge to a
singleton even when the fixed points are not isolated. However,
the specifics of the LCA network prevent us from applying
these results directly. In particular, the activation function is
zero on some interval and may be unbounded. In addition, the
interconnection matrixW may be singular.

The main contribution of this work is to apply a variation
of the Łojasiewicz inequality for nonsmooth functions [6] to
show two results. First, without assuming that the critical
points of (2) are isolated, we show that the outputa(t) of the
network converges to a single fixed point when starting from
any initial point, i.e.a(t) is globally asymptotically convergent.

Theorem 1. Under conditions(3)-(7), the outputa(t) of (1)
is globally asymptotically convergent, i.e.∃ a∗ ∈ R

N such
that a(t) → a∗, as t → +∞.

Second, we prove the even stronger result that the stateu(t)
also converges to a single fixed point.

Theorem 2. Under conditions(3)-(7), the stateu(t) of (1) is
globally asymptotically convergent, i.e.∃ u∗ ∈ R

N such that
u(t) → u∗, as t → +∞.

The necessary hypotheses (3)-(7) on the network are given
in Section II, along with a survey of previous works that use
the Łojasiewicz inequality and their limitations. SectionIII
gives a summary of the necessary mathematical notions along
with several lemmas. Finally, Section IV provides the proofs
of the two main results.

II. BACKGROUND

A. Hypotheses

We proved in [4] that the fixed points of the network (1)
coincide with the critical points of the objective function(2) if
the activation functionTλ(·) and the cost functionC(·) satisfy

un − an = un − Tλ(un) ∈ λ∂C(an). (3)

In addition, we showed that the objective function (2) is
decreasing along the network trajectories if the activation
function has the form

an(t) = Tλ(un(t)) =

{
0, |un(t)| ≤ λ
f(un(t)), |un(t)| > λ

, (4)

where the functionf(·) is a real-valued function defined on
D = (−∞,−λ]∪ [λ,+∞), is continuous onD, differentiable
on the interior ofD, and satisfies the following properties:

f(−un) = −f(un), ∀un ∈ D and f(λ) = 0 (5a)

f ′(un) > 0, ∀un ∈ int(D) (5b)

f(un) ≤ un, ∀un ∈ D s.t. un ≥ 0. (5c)

0

Fig. 2. Example of activation functions satisfying conditions (5)-(7). The
plain dark line corresponds to the soft-threshold functionfor `1-minimization.

Two activation functions satisfying these conditions are shown
in Fig. 2. Conditions (4) and (5) ensure that the state and
output trajectories are continuous for all time and that thecost
functionC(·) is strictly increasing with the absolute value of
the outputs.

Under conditions (3)-(5),V (·) is a Lyapunov function for
the network. Using this fact, we showed in [4] that the
output trajectories of (1) converge to the set of fixed points
satisfying

{
a ∈ R

N s.t. ȧ(t) = 0
}

. When the critical points of
(2) are isolated, we proved that the output and state variables
both converge to a singleton. This is the case, for instance,
when the objective functionV (·) is strictly convex. However,
when the points in this set are not isolated, Lyapunov theory
is insufficient to guarantee that the output converges to a
singleton.

For the purpose of this paper, we add the following require-
ments:

f(·) is subanalyticon D and (6)

∀U > λ, ∃αU > 0 s.t. ∀un ∈ [λ, U ] f ′(un) ≤ αU . (7)

The additional condition (6) ensures that the costC(·) and
thus the objectiveV (a) are subanalytic. This notion concerns
geometric properties of the graph of a function and will
be reviewed in detail in Section III and will allow us to
apply the Łojasiewicz inequality for nonsmooth functions.
Condition (7) ensures thatf ′(·) remains bounded on bounded
intervals. If f ′(·) is continuous, then (7) holds immediately.
However, (6) and (7) are more general conditions, andf ′(·)
need not be continuous. The activation functions satisfying
these conditions correspond to a large class of cost functions
that are often used in practice [9]. In particular, the soft-
thresholding function (black plain line in Fig. 2) satisfiesall
of the requirements and leads to the`1-minimization program.

B. The Łojasiewicz inequality

Since techniques based on Lyapunov functions only guar-
antee convergence to a set of fixed points, recent papers have
developed a new technique based on the Łojasiewicz inequality



[5] to overcome this limitation. This inequality states that for
all x̄ ∈ R

N , there existsν ∈ [0, 1), C > 0 and∆ > 0 such
that the gradient of a real-analytic functionF : R

N → R

satisfies:

|F (x) − F (x̄)|ν ≤ C ‖∇F (x)‖ ∀x ∈ B∆(x̄).

Using this inequality, the trajectories of certain networks can
be shown to be finite, ensuring convergence to a singleton
even when the fixed points are not isolated. In [10], a general
approach is taken where the network’s equation has the form

u̇(t) = −Du(t)−∇F (a(t))

a(t) = T (u(t))

In [10], the functionsF (·) andT (·) are assumed to be analytic
(which implies the existence of derivatives of any order), and
the activation functionT (·) is required to be bounded and
strictly increasing. Recently, an extension of the Łojasiewicz
inequality was developed for nonsmooth functions in [6]. In
addition, the authors of [6] show how a network satisfying
the differential inclusionu̇(t) ∈ −∂F (u(t)) has finite-length
trajectories ifF (·) is subanalytic and either lower semicontin-
uous convex or lower-C2. The notation∂F (x) represents the
subgradient of a functionF (·) at x (see Section III for a more
precise definition). Using this result, the study in [10] was
extended to the nonsmooth case in [11] for networks satisfying

u̇(t) ∈ −∂F (u(t)),

where the functionF (·) is subanalytic and the network solves
a quadratic program with linear constraints. Finally, the paper
[12] also makes use of the nonsmooth Łojasiewicz inequality
to prove that a network of the form

u̇(t) ∈ −Du(t)− ∂V (a(t)) + θ

a(t) = T (u(t))

converges to a singleton. In [12], the activation function must
be bounded and the diagonal matrixD must have strictly
positive entries.

We will show in Section III that the LCA network (1)
satisfies the differential inclusion

u̇(t) ∈ −∂V (a(t)).

Despite its similarities to previous studies, the specificsof
the LCA network prevent us from applying the results in
the works cited above. Specifically, to meet the requirements
of sparse approximation, the activation functionTλ(·) forces
many outputs to be zero by having a value of zero on[−λ, λ].
In addition, the activation function is generally nonsmooth
and unbounded. This last property discourages outputs from
growing away from zero. Finally, the interconnection matrix
W may have both positive and negative eigenvalues, as well
as a significantly large nullspace. These characteristics may
lead the objective functionV (a(t)) to remain constant while
the state vectoru(t) is still evolving. Nevertheless, these
previous studies have inspired the authors to apply similar
techniques based on the nonsmooth Łojasiewicz inequality to

prove convergence of the LCA network in the case of non-
isolated fixed points.

III. PRELIMINARIES

The keys to applying the Łojasiewicz inequality are the
subanalycity of the objective functionV (a) and the properties
of its subgradient. We adopt the definition of subgradient
used in [13] and [14]. For consistency, in this section we
review some definitions from nonsmooth analysis and the
Łojasiewicz inequality for nonsmooth functions. As we define
these notions, we also apply them to the LCA network and
develop several lemmas that will be useful in the proofs of the
main theorems.

A. Subgradient of the objective

The usualone-sided directional derivativeof a functionF :
R

N → R at x ∈ R
N in the directionv ∈ R

N is

F ′(x; v) = lim
t↓0

F (x + tv)− F (x)

t
.

Since some nonsmooth functions may fail to admit one-sided
derivatives, this definition is relaxed to the following notion
of generalized directional derivative:

F ◦(x; v) = lim sup
y→x
t↓0

F (y + tv)− F (y)

t
.

With this definition, the existence of directional derivatives of
F (·) atx are not necessary. For instance, the quantityF ◦(x; v)
is well-defined whenF (·) is only Lipschitz nearx. Using this
quantity, thesubgradientof F (·) at x ∈ R

N is defined as the
set

∂F (x) =
{
ξ ∈ R

N s.t. F ◦(x; v) ≥ ξT v, ∀v ∈ R
N
}
.

WhenF (·) is smooth atx, ∂F (x) is a singleton that coincides
with the classic notion of gradient∂F (x) = {∇F (x)}.

Note that for allun ∈ D, f(un) is well-defined and Eq. (3)
implies that∂C(an) reduces to a single point:

∂C(an) =
dC(an)

dan
= un − f(un).

In other words,C(·) is differentiable onR\{0}. As a conse-
quence,V (·) is also differentiable almost everywhere (a.e.),
except at pointsa ∈ R

N such thatan = 0 for somen =
1, . . . , N . BecauseV (·) is differentiable a.e., its subgradient
simplifies to the following definition [13]:

∂V (a) = co
{
lim
i→∞

∇V (bi) : bi → a, bi /∈ S, bi /∈ ΩV

}
,

where co is the convex hull,ΩV is the set of points where
V (·) fails to be differentiable, andS is any set of Lebesgue
measure0 in R

N . In other words,∂V (a) is the smallest
convex set containing the limit points of the gradients of the
function along any sequence of points{bi} approachinga
while avoidingΩV ∪S. WhenF ′(x; v) exists andF ′(x; v) =
F ◦(x; v) for all v ∈ R

N , the functionF (·) is said to beregular
at x [13, Def. 2.3.4].C(·) admits left and right derivatives
and is clearly regular onR. This implies thatV (·) is regular



on R
N . Consequently, proposition 2.3.3 of [13] holds with

equality and yields

∂V (a(t)) = −ΦT y +ΦTΦa(t) + λ∂C(a(t)), (8)

where ∂C(a(t)) =
[
∂C(a1(t)), . . . , ∂C(aN (t))

]T
. Finally,

condition (3) yields

−u̇(t) ∈ ∂V (a(t)). (9)

In order to compute the time derivative ofV (·) along the
LCA trajectories, we use the following result [13, Th. 2.3.9
(iii)], which is a generalization of the chain rule for regular
functions.

Theorem (Chain Rule). AssumeF (x) : RN → R is regular
in R

N and x(t) : [0,+∞) → R
N is locally absolutely

continuous on[0,+∞). Then,F (x(t)) is regular onRN . In
addition, its time derivativėF (x(t)) exists for almost allt ≥ 0
and satisfies

Ḟ (x(t)) =
d

dt
F (x(t)) = ζT ẋ(t) ∀ζ ∈ ∂F (x(t)). (10)

Using this result, we can compute the time derivative of
V (·) along the LCA trajectories. Noting thatV (a(t)) only
depends on the outputsan(t) that are non-zero, it is useful to
define the setΓ(t) = {n ∈ {1, . . . , N} s.t. |un(t)| > λ}. We
call this set of indices theactive setand the corresponding
un(t) and an(t) the active nodes. The active set is time-
dependent, since state variables may cross the thresholdλ in
either direction. However, for readability purposes, we remove
the explicit dependence on time in the notation and write it as
Γ. The notationsaΓ(t) anduΓ(t) refer to the vectorsa(t) and
u(t) where entries outside ofΓ are set to zero. In particular,
a(t) = aΓ(t) since an(t) = 0 for n ∈ Γc. The following
lemma gives two characterizations of the time derivative of
V (·) in terms of the active nodes.

Lemma 1. The time derivative ofV (a(t)) satisfies the two
equalities

V̇ (a(t)) = −
∑

n∈Γ

f ′(un(t)) |u̇n(t)|
2 (11)

V̇ (a(t)) = −
∑

n∈Γ

1

f ′(un(t))
|ȧn(t)|

2 (12)

for almost all t ≥ 0.

Proof. SinceV (a(t)) is regular, we can choose any element
in ∂V (a(t)) to compute the time derivative ofV (·) along the
trajectories of the neural network. In particular, we can pick
−u̇(t) ∈ ∂V (a(t)). Moreover, active nodes satisfyan(t) =
f(un(t)), and using the usual chain rule we getȧn(t) =

f ′(un(t))u̇n(t). As a consequence, (10) yields

V̇ (a(t)) = −u̇(t)T ȧ(t)

= −
N∑

n=1

u̇n(t)ȧn(t)

= −
∑

n∈Γ

f ′(un(t)) |u̇n(t)|
2

= −
∑

n∈Γ

1

f ′(un(t))
|ȧn(t)|

2
,

which completes the proof.

By condition (5b),f ′(un) > 0 for all n ∈ Γ, so this lemma
demonstrates that the objective function is strictly decreasing
on non-stationary output trajectories.

B. Properties of the network

The following lemma gives some properties of the cost
function that will be useful in the proof of the main results.

Lemma 2. Without loss of generality, assume thatC(0) = 0.
Then, conditions(3) and (5) on the activation function yield
the following properties:

C(an) ≥ 0 and C(an) = C(−an) ∀an ∈ R
N (13)

sign(un) = sign(an) ∀un ∈ D (14)

|an|
2 ≤ unan ≤ |un|

2 ∀un ∈ R. (15)

Proof. Sincef(·) is continuous and strictly increasing onD,
f−1(·) is well-defined and strictly increasing onf(D). In
addition, property (5a) off(·) implies thatf−1(·) satisfies
f−1(−an) = −f−1(an) andf−1(λ) = 0. As a consequence,
C(·) is continuous onR, and for all an > 0 we see that
dC(an) exists and is equal to

dC(an) = un − an = un − f(un) = f−1(an)− an.

This quantity is positive by (5c). This proves thatC(an) ≥
C(0) = 0 for all an > 0. Moreover, for allan > 0, the
following holds:

C(−an) =

∫ −an

0

dC(s)

=

∫ −an

0

(
f−1(s)− s

)
ds

=

∫ an

0

(
f−1(−s) + s

)
(−ds)

=

∫ an

0

(
f−1(s)− s

)
ds = C(an).

SoC(−an) = C(an) for all an ∈ R and (13) holds.
By (5), for all un > λ, we have

0 < an = f(un) ≤ un

−un ≤ −f(un) = f(−un) = −an < 0,

which proves (14), i.e. sign(an) = sign(un). This also
shows thatanun = sign(an) |an| sign(un) |un| = |an| |un|
and |an| ≤ |un| for all un ∈ D. This last inequality can be



extended toR, since for |un| ≤ λ, an = 0. Finally, for all
un ∈ R, we obtain:

|an|
2 ≤ |an| |un| = anun ≤ |un| ,

which proves (15).

Note that we could choose any value forC(0). In all cases,
the objective functionV (·) will be lower bounded byλNC(0),
and a lower-bound onV (·) is all that is required in the proofs.
Taking C(0) = 0 simplifies the lower bound toV (·) ≥ 0 on
all of RN . Using these properties, the following lemma states
that the objective function is also upper-bounded for all time,
and so are the output and state variables.

Lemma 3. For all t ≥ 0, we haveV (a(t)) ≤ V (a(0)). In
addition, the outputa(t) and state variablesu(t) of the system
(1) are bounded for allt ≥ 0.

Proof. From (12) and (5b), we have thaṫV (a(t)) ≤ 0 for
almost allt ≥ 0. As a consequence,V (a(t)) is non-increasing
and for all t > 0 we have:

V (a(t)) − V (a(0)) =

∫ t

0

V̇ (a(s))ds.

Since0 < t and V̇ (a(t)) ≤ 0 for almost alls ∈ (0, t), by the
positivity of the integral we see thatV (a(t)) ≤ V (a(0)) for
all t ≥ 0.

Next, we show that the stateu(t) is bounded. For this result,
we begin by showing that both‖Φa(t)‖2 and ‖Φu(t)‖2 are
bounded for allt ≥ 0. Condition (13) guarantees thatC(an) ≥
0 for all an ∈ R, so for all t ≥ 0 we have:

1

2
‖y − Φa(t)‖22 ≤ V (a(t)) ≤ V (a(0)).

The triangle inequality yields

‖Φa(t)‖2 − ‖y‖2 ≤
√
2V (a(0)).

This shows that‖Φa(t)‖2 is bounded for allt ≥ 0. For this
reason, there must exist a constantC1 ≥ 0 such that, for all
t ≥ 0,
∥∥(I − ΦΦT )Φa(t) + ΦT y

∥∥
2
≤ σ1 ‖Φa(t)‖2 +

∥∥ΦT y
∥∥
2
≤ C1,

whereσ1 ≥ 0 is the largest eigenvalue of the interconnection
matrix W = ΦΦT − I. This inequality implies that‖Φu(t)‖2
is also bounded fort ≥ 0. Indeed, using the Cauchy-Schwartz
inequality, the time-derivative of1/2 ‖Φu(t)‖22 satisfies

d

dt

1

2
‖Φu(t)‖22 = u(t)ΦTΦu̇(t)

= uTΦTΦ(−u(t) + a(t)− ΦTΦa(t) + ΦT y)

≤ −‖Φu(t)‖22 + ‖Φu(t)‖2 C1

≤ −‖Φu(t)‖2 (‖Φu(t)‖2 − C1) .

As a consequence, the set
{
u ∈ R

N s.t. ‖Φu‖2 ≤ C1

}
is

attractive, and by continuity,‖Φu(t)‖2 is bounded for all
t ≥ 0. We cannot conclude directly that‖u(t)‖2 is bounded
because the matrixΦ may be singular. Any vectoru in its
nullspace can grow unbounded while‖Φu‖2 remains bounded.

However,u(t) can be decomposed into its componentu1(t)
that lies in the nullspace ofΦ and its componentu2(t) that
lies in the range ofΦT . These two vectors are orthogonal (this
comes from the singular value decomposition ofΦ), and we
will show that each of them is bounded. Sinceu1(t) is in the
nullspace ofΦ, we haveΦu(t) = Φu2(t). Sinceu2(t) is in
the range ofΦT , ∃ x2(t) ∈ R

M such thatu2(t) = ΦTx2(t).
Using the Cauchy-Schwartz inequality, we find

‖x2(t)‖2 ‖Φu(t)‖2 ≥ x2(t)
TΦu(t)

= x2(t)
TΦu2(t)

= x2(t)
TΦΦTx2(t) ≥ σ2

2 ‖x2(t)‖
2
2 ,

whereσ2 > 0 is the smallest singular value ofΦT restricted
to its range (so it is strictly positive). Lettingσ3 be the largest
singular value ofΦT , we obtain

‖u2(t)‖2 =
∥∥ΦTx2(t)

∥∥
2
≤ σ3 ‖x2‖2 ≤ σ3σ

−2
2 ‖Φu(t)‖2 .

Since‖Φu(t)‖2 is bounded, so is‖u2(t)‖2. On the other hand,
using the fact thatΦu1(t) = 0, we can compute the time-
derivative of1/2 ‖u1(t)‖

2
2 as follows:

d

dt

1

2
‖u1(t)‖

2
2 = u1(t)

T u̇1(t)

= u1(t)
T
(
−u(t) + a(t) + ΦT y − ΦTΦa(t)

)
1

= −u1(t)
Tu1(t) + u1(t)

T a1(t) ≤ 0,

where the last inequality follows from (15). We conclude that
‖u1(t)‖2 is also bounded for allt ≥ 0. This shows that
‖u(t)‖2 ≤ ‖u1(t)‖2 + ‖u2(t)‖2 is bounded∀t ≥ 0.

Finally, since f(·) is continuous onD and ‖u(t)‖2 is
bounded for allt ≥ 0, ‖f(u(t))‖2 is also bounded for all
t ≥ 0. The elements of the outputa(t) are either equal to zero
or to f(u(t)), which shows that‖a(t)‖2 is also bounded.

Lemma 3 states thatu(t) is bounded for allt ≥ 0, which
together with conditions (5b) and (7) guarantee that there
exists+∞ > α ≥ β > 0 such that∀n ∈ Γ

α ≥ f ′(un(t)) ≥ β ∀t ≥ 0. (16)

The inequalities hold for all time and the two constantsα and
β will be used in the proof of the first main result.

C. Subanalycity of the objective function

Finally, we show thatV (·) is subanalytic and state the
Łojasiewicz inequality for nonsmooth functions.

A function is subanalytic if its graph obeys certain geomet-
ric properties. This notion involves algebraic manipulations of
sets defined by real-analytic equations and inequalities. More
precisely, a setA ⊂ R

N is said to besemianalyticif each
point x ∈ R

N admits a neighborhoodN for which

A ∩ N =

p⋃

i=1

q⋂

j=1

{x ∈ N , fij(x) = 0, gij(x) > 0}

where fij , gij : N → R are real-analytic functions for all
1 ≤ i ≤ p, 1 ≤ j ≤ q, and p and q are some integers. The
setA is said to besubanalyticif it is locally the projection



of a semianalytic set, i.e. each pointx ∈ R
N admits a

neighborhoodN such thatA∩N =
{
x ∈ R

N , (x, y) ∈ B
}

,
whereB is a bounded semianalytic subset ofR

N × R
M for

some M ≥ 1. A function F : R
N → R is said to be

subanalyticif its graph,GrafF = {(x, y) s.t. y = F (x)}, is
a subanalytic subset ofRN × R.

From condition (6),f(·) is subanalytic, and soV (a) is also
subanalytic. Indeed, we can write the graph ofV (·) as the
projection onto the first and last component of the set
{
a, v1, a2, v2, v ∈ R

2N+3 s.t.
1

2
‖y − Φa‖2 = v1,

λC(a2) = v2, a = a2, v = v1 + v2}

= (GrafF1 ×GrafF2 ×R)
⋂{

a, a2, v1, v2, v ∈ R
2N+3

s.t. a = a2, v = v1 + v2} ,

where F1(a) =
1

2
‖y − Φa‖22 and F2(a) = λC(a) are

subanalytic.
The following theorem gives the Łojasiewicz inequality for

nonsmooth functions [6, Th 3.1.]. It provides some bound on
the decay of the function in terms of its nonsmooth slope. The
nonsmooth slopeof F (·) at x ∈ R

N is defined as

m(∂F (x)) = inf {‖ξ‖2 , ξ ∈ ∂F (x)} ,

and represents the smallest norm in the set∂F (x).

Theorem (Nonsmooth Łojasiewicz inequality). Suppose that
a functionF : RN → R is subanalytic and continuous inRN .
Then, for anyx̄ ∈ R

N , there existν ∈ [0, 1), C > 0, and
∆ > 0 such that

|F (x)− F (x̄)|ν ≤ C m(∂F (x)) ∀x ∈ B∆(x̄).

The subanalycity ofV (·) and the Łojasiewicz inequality
rely on geometric properties and do not require smoothness
of the function.

IV. PROOF OF THE RESULTS

Having established the lemmas in the previous section, we
are now ready to prove the main results. First, using the
Łosajiewicz inequality onV (·), we can prove that the output
trajectories necessarily converge to a single fixed point.

Proof of Theorem 1.We begin by showing thatV (a(t)) is
convergent. Indeed, by (12), (5b) and (13), we see thatV (a(t))
is decreasing andV (a(t)) ≥ 0 for all t ≥ 0. As a consequence,
V (a(t)) converges ast goes to infinity. Denote byV ∗ this
limit. On the other hand, by Lemma 3,a(t) is bounded for
all t ≥ 0. By the Bolzano-Weierstrass theorem, there exists a
sequence of increasing times{tk}k∈N

such that{a(tk)}k∈N

converges. Leta∗ be the limit point of this converging se-
quence. We will show that the outputa(t) converges toa∗

with a proof by contradiction.
By the continuity ofV (a(t)), the limit satisfiesV (a∗) =

V ∗. Applying the nonsmooth Łojasiewicz inequality toV (·)
at a∗, there existν ∈ [0, 1), C > 0, and∆ > 0 such that

|V (a)− V ∗|ν ≤ C m(∂V (a)), ∀a ∈ B∆(a
∗). (17)

We fix 0 < δ ≤ ∆. Sincea(tk) converges toa∗, there exists
K ∈ N such that for allk ≥ K

‖a(tk)− a∗‖2 <
δ

4
. (18)

SinceV (a(t)) is decreasing and converges toV ∗, there exists
T ≥ 0 such that, for allt ≥ T

0 ≤ V (a(t))− V ∗ ≤

[
βδ (1− ν)

4Cα

] 1

1−ν

, (19)

where C and ν are defined in (17) andα, β
in (16). We now define the time indexp =
min {k ∈ N s.t. k ≥ K and T ≤ tk}. Time tp exists,
since the sequence of time{tk}k∈N

is increasing and goes to
infinity. In addition, tp is such that it satisfies both (18) and
(19). We also define

tq = sup {t ≥ tp s.t. ∀s ∈ [tp, t) ‖a(s)− a∗‖2 < δ} .

If tq = +∞, then for all timet ≥ tp, ‖a(t)− a∗‖2 ≤ δ. Since
δ can be chosen arbitrarily small, this proves that the output
a(t) converges to the single fixed pointa∗. By contradiction,
assume thattq < +∞. This implies that for all times ∈
[tp, tq), the output trajectory remains within a ball of radius
δ around the fixed point, i.e.a(s) ∈ Bδ(a

∗), but leaves this
ball at timetq, i.e. ‖a(tq)− a∗‖2 = δ. According to (16), we
have∀n ∈ Γ,

‖ȧn(t)‖2 = ‖f ′(un(t))� u̇n(t)‖2 ≥ β ‖u̇n(t)‖2 ,

which implies that

‖ȧ(t)‖2 = ‖ȧΓ(t)‖2 ≥ β ‖u̇Γ(t)‖2
≥ βm(∂V (aΓ(t))) = βm(∂V (a(t))).

Furthermore, from (12) and (16) we see that

V̇ (a(t)) = −
∑

n∈Γ

1

f ′(un(t))
|ȧn(t)|

2 ≤ −
1

α
‖ȧ(t)‖22 .

Putting everything together, we get

V̇ (a(t)) ≤ −
1

α
‖ȧ(t)‖22 ≤ −

β

α
‖ȧ(t)‖2 m(∂V (a(t))).

By definition of tq, and sinceδ < ∆ for all t ∈ (tp, tq), we
havea(t) ∈ Bδ(a

∗) ⊂ B∆(a
∗), and so (17) yields

‖ȧ(t)‖2 ≤
α

β

−V̇ (a(t))

m(∂V (a(t)))

≤
αC

β

−V̇ (a(t))

(V (a(t)) − V ∗)
ν . (since−V̇ ≤ 0)



Then we can find an upper bound for the following integral:

‖a(tq)− a(tp)‖2 =

∥∥∥∥∥

∫ tq

tp

ȧ(s)ds

∥∥∥∥∥
2

≤

∫ tq

tp

‖ȧ(s)‖2 ds

≤ −
αC

β

∫ tq

tp

V̇ (a(s))

(V (a(s))− V ∗)
ν ds

= −
αC

β

∫ V (a(tq))

V (a(tp))

dV

(V − V ∗)
ν

=
αC

β (1− ν)

[
(V (a(tp))− V ∗)

1−ν

− (V (a(tq))− V ∗)1−ν
]

≤
αC

β (1− ν)
(V (a(tp))− V ∗)

1−ν

≤
δ

4
. (from (19))

Finally, we see that

δ = ‖a(tq)− a∗‖2 ≤ ‖a(tq)− a(tp)‖2 + ‖a(tp)− a∗‖2

≤
δ

4
+

δ

4
=

δ

2
< δ.

We have reached a contradiction, which proves thattq = +∞.
Consequently, for allt ≥ tp, we have‖a(t)− a∗‖2 ≤ δ.
Since δ can be chosen arbitrarily small, this shows that
lim

t→+∞
a(t) = a∗, and thus the output converges.

The second proof of this section shows that the state
variables also converge to a single fixed pointu∗.

Proof of Theorem 2.From Theorem 1, the output converges
to some fixed pointa∗ ∈ R

N . The dynamical equation (1) can
be written in terms of the distancẽa(t) = a(t) − a∗ of the
output from the fixed point:

u̇(t) = −u(t)− ΦTΦa∗ +ΦT y + a∗ − ΦTΦã(t) + ã(t).

Defining u∗ = −ΦTΦa∗ + ΦT y + a∗ yields the following
equation:

u̇(t) = −u(t) + u∗ −
(
ΦTΦ− I

)
ã(t).

The solutions of this differential equation have the following
form for all t ≥ 0:

u(t) = u∗ + e−t (u(0)− u∗) + e−t

∫ t

0

es
(
ΦTΦ− I

)
ã(s)ds.

The second terme−t (u(0)− u∗) obviously converges to zero
as t goes to infinity. We will also show that the last term
converges to zero, thus proving thatu(t) converges tou∗.
Denote byh(t) this integral term, and consider its norm:

‖h(t)‖2 =

∥∥∥∥e
−t

∫ t

0

es
(
ΦTΦ− I

)
ã(s)ds

∥∥∥∥
2

= e−t

∫ t

0

es
∥∥(ΦTΦ− I

)
ã(s)

∥∥
2
ds

≤ e−tσ1

∫ t

0

es ‖ã(s)‖2 ds,
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Fig. 3. Convergence of LCA trajectories obtained for20 different initial
points and projected onto the space spanned by two randomly chosen non-
zero entries ofa†. The color gradient indicates the time evolution. A red cross
indicates the fixed point reached by the system.

whereσ1 ≥ 0 is the largest eigenvalue of the interconnection
matrix W = ΦΦT − I. To show convergence to zero, we split
the integral into two parts. Sincea(t) converges toa∗, ã(t)
converges to0 as t → +∞. Thus, for anỹε > 0, there exists
a timetc ≥ 0 such that,∀t ≥ tc ‖ã(t)‖2 ≤ ε̃. Moreover, since
‖ã(t)‖2 is continuous and goes to zero ast goes to infinity, it
admits a maximumµ, ∀t ∈ R. This yields, for allt ≥ 2tc

‖h(t)‖2 ≤ e−t
∥∥ΦTΦ− I

∥∥
2
µ

∫ tc

0

esds

+ e−t
∥∥ΦTΦ− I

∥∥
2
ε̃

∫ t

tc

esds

≤
∥∥ΦTΦ− I

∥∥
2
µ
[
e−t+tc − e−t

]

+
∥∥ΦTΦ− I

∥∥
2
ε̃
[
1− e−t+tc

]

≤
∥∥ΦTΦ− I

∥∥
2
µ
[
e−t/2 − e−t

]
+
∥∥ΦTΦ− I

∥∥
2
ε̃.

Since the left term converges to0 and ε̃ can be chosen
arbitrarily small, this shows that the trajectoryu(t) converges
to the trajectoryu∗+e−t (u(0)− u∗) ast goes to infinity, and
thus, we can conclude thatu(t) −→

t→+∞
u∗.

V. SIMULATION

To illustrate the theoretical result, we create an example
for which there exists a subspace of non-isolated solutions.
The matrixΦ has dimensionM = 256 by N = 512 and is
generated uniformly at random from a Gaussian distribution
(then normalized to have columns with unit norm). A sparse
vector a† is generated by selecting uniformly at random the



location of5 non-zero entries. Their amplitudes are generated
from a normal distribution and normalized to one. The column
in Φ corresponding to one of the non-zero entries is replaced
by a random linear combination of the other4 columns and
normalized. The measurements arey = Φa†+n, wheren is a
Gaussian noise with standard deviationσ = 0.01. The network
is simulated through a discrete approximation in Matlab with
a step size of0.001, a time constant ofτ = 0.01 and the soft-
threshold activation function with a threshold set toλ = 0.03.
Figure 3 shows the trajectories for20 random starting points
projected onto the space spanned by two randomly selected
non-zero entries ofa†. Despite the solutions being non-isolated
and lying on a linear subspace, the system converges and
reaches a single fixed point for every starting point.

VI. SUMMARY

The LCA is a neural network defined by a set of differential
equations. It was shown in [4] that the fixed points of the
network coincide with the set of solutions of the sparse
approximation problem with an appropriate cost function.
However, the Lyapunov approach used in [4] was insufficient
to guarantee convergence of the outputs to a single fixed point
in the case where the sparse approximation problem had non-
isolated solutions. A technique using the Łojasiewicz inequal-
ity has recently been developed that overcomes this limitation.
For networks satisfying a certain type of differential inclusion
with a subanalytic objective, the trajectories can be shownto
converge to a single fixed point even when there are infinitely
many and non-isolated solutions. However, the characteristics
of the LCA necessitate a more careful treatment. In particular,
its activation function is nonsmooth and possibly unbounded,
and its interconnection matrix may be singular. In this paper,
we were able to apply the Łojasiewicz inequality when the
activation function is subanalytic to prove convergence of
both the output and state variables without assuming isolated
solutions. This improves on the results obtained in [4] and
provides further evidence that the LCA is a reliable network
to solve this important class of optimization programs, thus
supporting pursuing its implementation in analog.
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