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Abstract— Sparse approximation is an optimization program
that produces state-of-the-art results in many applicatims in
signal processing and engineering. To deploy this approacm
real-time, it is necessary to develop faster solvers than ar
currently available in digital. The Locally Competitive Al gorithm
(LCA) is a dynamical system designed to solve the class of
sparse approximation problems in continuous time. But befee
implementing this network in analog VLSI, it is essential to
provide performance guarantees. This paper presents new selts
on the convergence of the LCA neural network. Using recently
developed methods that make use of the tojasiewicz inequgli
for nonsmooth functions, we prove that the output and state
trajectories converge to a single fixed point. This improveson  Fig. 1. Block diagram of the LCA network. The stait) is driven by
previous results by guaranteeing convergence to a singlet@ven the projection of the signay onto each of theV dictionary elementsb,,.
when the optimization program has infinitely many and non- The state produces the output) through the activation functiof’ (-). The
isolated solution points. output is then weighted by the interconnection matfixand fed back.
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|I. INTRODUCTION

PARSE approximation decomposes a signat RM in ~ The LCA is a type of Hopfield-style network [2], and

an overcomplete dictionar® € RM*V, with M < N, as such a Lyapunov function can be designed for it. An
by constraining the approximation coefficientss R to be appropriate Lyapunov function for (1) is the typical objeet
sparse (i.e. to have only a few non-zero entries). The Lycailinction used to solve sparse approximation problems:
Competitive Algorithm (LCA) introduced in [1] is a neural
network designed to solve this problem and is defined by the
following differential equation:

Tu(t) = —u(t) — (7@ — 1) a(t) + @Ty. 1) The first term is the mean-squared error of the approximation
a(t) = Tx(u(t)) while the second ternd'(-) is a cost penalty on the solution
The LCA network (whose architecture is shown in Fig. 1{at encourages sparsity. The paramatira tradeoff between
takes as input the vecta@”y. The components of the inputthese two objectives. The most famous sparse approximation
drive the vectonu(¢), which contains the state variables(¢) ~Program is £;-minimization, also known as Basis Pursuit
forn =1,...,N. The columns of the matri# can be viewed D€noising. This optimization program plays an important

as elements of the dictionary. We assume that they have JRi#¢ in signal processing, and in particular in Compressed
norm and denote them bg, € RM for n = 1,...,N. Sensing, since it allows to recover a sparse signal from many

The outputs of the system are tag(t) for n = 1,..., N. fewer measurements than traditional approaches [3]. Hsr th

They are generated by the nonlinear activation funcfigh), ~Program, the cost functiofi(-) is the absolute value, resulting
which is applied entry-wise to the state vectoft). Each N @nfi-norm penalty oru.

output generates a feedback into each state. The strengthheoretical guarantees on system performance (e.g., conve
of the feedback depends on the level of output activity artnce, convergence speed, etc.) are an important courtterpa
on the strength of the inner product between two dictionaBP90ing work implementing the LCA in analog circuitry [7],
elements. The values of these inner products are represergd To this end, in a previous paper [4], we showed that if the
by the interconnection matri¥/ = ®7® — I. This structure activation functionT’(-) and the cost functio(-) satisfy a
ensures that two non-zero coefficients do not carry the saffitain relationship, the fixed points of (1) correspondtte t

information about the signal. The time constandepends on cfitical points of (2). In addition, using a Lyapunov apptba
the physical solver; for our analysis, we take= 1 without @nd under certain conditions on the activation function, we

N
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loss of generality. showed that the outputs of the network converge to the set of
fixed points. When the solution is unique or when the objectiv
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not isolated. Under some additional conditions on the bl Cl(t)
parameters (such as the eigenvalues of certain submatfices
®7T®), we also proved that the LCA converges to a single
fixed point with exponential rate of convergence [4].

Recently, several papers have developed a new technique
based on the tojasiewicz inequality [5]. Using this inedyal
the output of certain networks can be shown to converge to a
singleton even when the fixed points are not isolated. Howeve
the specifics of the LCA network prevent us from applying
these results directly. In particular, the activation fimrt is
zero on some interval and may be unbounded. In addition, the
interconnection matrixy may be singular.

The main contribution of this work is to apply a variation
of the tojasiewicz inequality for nonsmooth functions [6] t rig. 2. Example of activation functions satisfying coraits (5)-(7). The
show two results. First, without assuming that the criticalain dark line corresponds to the soft-threshold funcfmm¢; -minimization.
points of (2) are isolated, we show that the outp(t} of the
network converges to a single fixed point when starting from
any initial point, i.ea(t) is globally asymptotically convergent Two activation functions satisfying these conditions dreven

y in Fig. 2. Conditions (4) and (5) ensure that the state and

Theorem 1. Under condition3)-(7), the outputa() of (1)  gytput trajectories are continuous for all time and thatctbst

is globally asymptotically convergent, i.8.a* & R™ such fynction C(.) is strictly increasing with the absolute value of

that a(t) — a*, ast — +oo. the outputs.
Second, we prove the even stronger result that the staje ~ Under conditions (3)-(5))'(+) is a Lyapunov function for
also converges to a single fixed point. the network. Using this fact, we showed in [4] that the

- ~output trajectories of (1) converge to the set of fixed points
Theorem 2. Under conditiong3)-(7), the stateu(t) of (1) is satisfying{a € R" s.t. a(t) = 0}. When the critical points of
globally asymptotically convergent, i.8.u* € RY such that (2) are isolated, we proved that the output and state vasabl
u(t) = u*, ast — +oo. both converge to a singleton. This is the case, for instance,
The necessary hypotheses (3)-(7) on the network are givéRen the obj_ecti\(e fupctiomf (-)is str_ictly convex. However,
in Section 1, along with a survey of previous works that us@hen the points in this set are not isolated, Lyapunov theory
the tojasiewicz inequality and their limitations. Sectith IS insufficient to guarantee that the output converges to a

gives a summary of the necessary mathematical notions al leton. . _ _
with several lemmas. Finally, Section IV provides the peoof FOr the purpose of this paper, we add the following require-
of the two main results. ments:

Il. BACKGROUND f(-) is subanalytion D and (6)

!/
A. Hypotheses YU > A, Jay >0 st. Yu, € [\U] f'(un) <ay. (7)

We proved in [4] that the fixed points of the network (1)/he additional condition (6) ensures that the cO%t) and
coincide with the critical points of the objective functi¢?) if thus the objectivé/(a) are subanalytic. This notion concerns

the activation functioT’, (-) and the cost functior(-) satisfy 9eometric properties of the graph of a function and will
be reviewed in detail in Section Il and will allow us to

Up — Ap = Uy — T (un) € NOC(an). (3) apply the tojasiewicz inequality for nonsmooth functions.

In addition, we showed that the objective function (2) ig:ondmon (7) ensures thaff () remains bounded on bounded

. . Co 2 Intervals. If f/(-) is continuous, then (7) holds immediately.
decreasing along the network trajectories if the actlvanq_lowever (GJ; ;zld (7) are more geneEaI) conditions, #f@) Y
function has the form ! '

need not be continuous. The activation functions satigfyin
an(t) = T (un(t)) = { 0, |un(t)] < A L@ these conditions corre_spond to a large class_of cost fumstio
fun(t),  [un(t)] > A that are often used in practice [9]. In particular, the soft-

thresholding function (black plain line in Fig. 2) satisfial

where the functionf(-) is a real-valued function defined on ; L9
of the requirements and leads to theminimization program.

D = (—o0, —AJU[A, +00), is continuous orD, differentiable
on the interior ofD, and satisfies the following properties:

Fl=un) = —f(un), Yun €D and f(A) =0 (5a) B. The Lolasu?wmz inequality .

F'(un) > 0, Vun, € int(D) (5b) Since techniques based on I__yapunqv functions only guar-
antee convergence to a set of fixed points, recent papers have

fun) <tp, Vun €D st up > 0. (5¢) developed a new technique based on the tojasiewicz ingéguali



[5] to overcome this limitation. This inequality statesttfiar prove convergence of the LCA network in the case of non-
all z € RY, there exist € [0,1), C > 0 and A > 0 such isolated fixed points.
that the gradient of a real-analytic functign : RV — R

. e Ill. PRELIMINARIES
satisfies:

The keys to applying the tojasiewicz inequality are the

|[F(x) — F(z)]” < C||VF(z)] Vz € Ba(Z).  subanalycity of the objective functiori(a) and the properties
Using this inequality, the trajectories of certain netvodan ©f its subgradient. We adopt the definition of subgradient
be shown to be finite, ensuring convergence to a singletdf€d in [13] and [14]. For consistency, in this section we
even when the fixed points are not isolated. In [10], a genef§View some definitions from nonsmooth analysis and the

approach is taken where the network’s equation has the fokpiasiewicz inequality for nonsmooth functions. As we defin
these notions, we also apply them to the LCA network and

u(t) = —Du(t) — VF(a(t)) develop several lemmas that will be useful in the proofs ef th
a(t) = T(u(t)) main theorems.

In [10], the functionsF(-) andT'(-) are assumed to be analyticA. Subgradient of the objective

(which implies the existence of derivatives of any ordenda  The usuabne-sided directional derivativef a functionF :
the activation functionl'(-) is required to be bounded andr™ _ R at z € RY in the directionv € R is

strictly increasing. Recently, an extension of the Lojasie F(z + tv) — F(x)

inequality was developed for nonsmooth functions in [6]. In F'(z;v) = 12}51 "

addition, the authors of [6] show how a network satisfying
the differential inclusioni(t) € —OF (u(t)) has finite-length Since some nonsmooth functions may fail to admit one-sided
trajectories ifF(-) is subanalytic and either lower semicontinderivatives, this definition is relaxed to the following ot
uous convex or lowe€?. The notationd F'(z) represents the Of generalized directional derivative

subg_radient_ qf_a functigﬁ(.) gt;v (see Section I f_or a more (o) = 1 F(y +tv) — F(y)
precise definition). Using this result, the study in [10] was (50) = lglj}ﬁlp P
extended to the nonsmooth case in [11] for networks satigfyi t10
a(t) € —OF (u(t)) With this definition, the existence of directional derivat of

F(-) atz are not necessary. For instance, the quartityz; v)
where the functiorf’(-) is subanalytic and the network solvess well-defined wherF'(-) is only Lipschitz near:. Using this
a quadratic program with linear constraints. Finally, tik@@r quantity, thesubgradientof F(-) atz € RY is defined as the
[12] also makes use of the nonsmooth tojasiewicz inequaliggt
to prove that a network of the form

i(t) € —Du(t) — OV (a(t)) + . o .
WhenF'(-) is smooth at:, 0F(x) is a singleton that coincides
a(t) =T(u(t)) with the classic notion of gradiedF (z) = {VF(z)}.

converges to a singleton. In [12], the activation functionsm  Note that for allu,, € D, f(us) is well-defined and Eq. (3)
be bounded and the diagonal matrx must have strictly implies thatoC(a,,) reduces to a single point:
positive entries. dC(ay,)

We will show in Section Ill that the LCA network (1) 0C(an) = —— = un — f(un).
satisfies the differential inclusion "

OF (z) = {¢ € RN s.t. F°(x;v) > Tv, Yo e RN}.

In other words,C(-) is differentiable onR\{0}. As a conse-
u(t) € =0V (a(t)). quence,V(-) is also differentiable almost everywhere (a.e.),
except at pointss € RV such thata,, = 0 for somen =
..., N. Becausel/(-) is differentiable a.e., its subgradient
mplifies to the following definition [13]:

Despite its similarities to previous studies, the specififs
the LCA network prevent us from applying the results ir]i_’
the works cited above. Specifically, to meet the requiremerﬂ
of sparse approximation, the activation functidg(-) forces OV (a) = co{.hm VV(bi): b — a,b; & S, b; ¢ Qv},
many outputs to be zero by having a value of zerd-ei, AJ. i—00

In addition, the activation function is generally nonsniootwhereco is the convex hull)y is the set of points where
and unbounded. This last property discourages outputs frang-) fails to be differentiable, an& is any set of Lebesgue
growing away from zero. Finally, the interconnection matrimeasure0 in RY. In other words,0V (a) is the smallest
W may have both positive and negative eigenvalues, as wetinvex set containing the limit points of the gradients & th
as a significantly large nullspace. These characteristigg nfunction along any sequence of poings;} approachinga
lead the objective functio’ (a(¢)) to remain constant while while avoidingQ2y US. When F'(z;v) exists andF’ (x;v) =
the state vectoru(t) is still evolving. Nevertheless, theseF°(z;v) forall v € RY, the functionF(-) is said to beegular
previous studies have inspired the authors to apply similar x [13, Def. 2.3.4].C(-) admits left and right derivatives
techniques based on the nonsmooth tojasiewicz inequalityand is clearly regular oiR. This implies thatV/(-) is regular



on RY. Consequently, proposition 2.3.3 of [13] holds withf’(u, (t))u,(t). As a consequence, (10) yields
equality and yields V(a(t)) — —aTa()

N
oV (a(t)) = —®Ty + ®Tda(t) + NoC(a(t)),  (8) =Y dn(t)an(t)
n=1
where 9C(a(t)) = [0C(a1(1)),...,0C(an(t))]". Finally, == F(un(t)) |in(t)?
condition (3) yields ner X
== w0
—a(t) € dV(a(t)). ©) e I (un (1))
which completes the proof. O

In order to compute the time derivative f(-) along the gy condition (5b),f’(u,) > 0 for all n € T, so this lemma

LCA trajectories, we use the following result [13, Th. 2.3.§emonstrates that the objective function is strictly dasireg
(iii)], which is a generalization of the chain rule for regul 5 non-stationary output trajectories.

functions.

B. Properties of the network
The following lemma gives some properties of the cost
nction that will be useful in the proof of the main results.

Theorem (Chain Rule) AssumeF(x) : RN — R is regular

in RV and z(t) : [0,4+00) — R is locally absolutely ¢,

continuous on0, +o0o). Then,F(x(t)) is regular onRY. In

addition, its time derivative”(z(t)) exists for almost alt > 0 Lemma 2. Without loss of generality, assume th@(0) = 0.

and satisfies Then, conditiong3) and (5) on the activation function yield
the following properties:

. d
F(x(t)) = = F(x(t)) = Ti(t) V¢ edF(z(t). @0) Clan) 20 and C(an) =C(-a,)  Va, €RY (13)
sign(u,) = sign(ay) Yu, € D (14)
2 2
Using this result, we can compute the time derivative of |an]” < unan < funl Vun € R. (15)

V() along the LCA trajectories. Noting that (a(¢)) only proof. Since f(-) is continuous and strictly increasing @
depends on the outpuis, (¢) that are non-zero, it is useful to ¢~1(.) js well-defined and strictly increasing ofi(D). In
define the sel'(t) = {n € {1,..., N} s.t. [un(t)] > A}. We addition, property (5a) off(-) implies that f~1(-) satisfies
call this set of indices thactive setand the corresponding r-1(_q, ) = —f~1(q,) and f~'(\) = 0. As a consequence,
un(t) and an(t) the active nodesThe active set is time- ¢(.) is continuous onR, and for alla, > 0 we see that
dependent, since state variables may cross the threshiold ;c (g, ) exists and is equal to

either direction. However, for readability purposes, waoge .

the explicit dependence on time in the notation and writsita  dC(an) = un — an = up — fun) = 7 (an) — an.

I'. The notationsir(t) andur(t) refer to the vectora(t) and This quantity is positive by (5c). This proves th@(a,,) >
u(t) where entries outside df are set to zero. In particular,c(o) — 0 for all a, > 0. Moreover, for alla, > 0, the
a(t) = ar(t) sincea,(t) = 0 for n € T*. The following  foliowing holds: ’ '
lemma gives two characterizations of the time derivative of

V() in terms of the active nodes. C(—ay) = /ﬂl" dC(s)
Lemma 1. The time derivative o¥/ (a(t)) satisfies the two O—an
equalities :/ (f7'(s)—s) ds
0
V(a(t) ==Y f'(un(t)) it (t)] (11) = /0 () ) (—ds)
nel’ an
- A _
nel = 27" S0 C(~an) = C(ay) for all a, € R and (13) holds.

By (5), for all u,, > A, we have
for almost allt > 0.

0<an=flup) <up
Proof. SinceV'(a(t)) is regular, we can choose any element iy < —f(tn) = f(—tun) = —apn < 0
in OV (a(t)) to compute the time derivative df(-) along the "= " " e
trajectories of the neural network. In particular, we cackpi which proves (14), i.e. sign(a,) = sign(u,). This also
—u(t) € 0V (a(t)). Moreover, active nodes satisfy,(t) = shows thata,u, = sign(a,) |an| sign(u,) |un| = |an| |un]
f(un(t)), and using the usual chain rule we get(t) = and|a,| < |u,| for all u,, € D. This last inequality can be



extended taR, since for|u,| < A, a, = 0. Finally, for all However,u(t) can be decomposed into its componentt)
u, € R, we obtain: that lies in the nullspace od and its components(t) that
lies in the range o®”. These two vectors are orthogonal (this
comes from the singular value decompositiondgf and we
which proves (15). 0 will show that each of them is bounded. Sinegt) is in the
nullspace of®, we havedu(t) = Pusq(t). Sincewus(t) is in
Not(_e thgt we co_uld choo.se any value fgf0). In all cases, . range ofd”, 3 z2(t) € RM such thatus(t) = &7z (t).
the objective functio//(-) will be lower bounded by N C/(0),
and a lower-bound o () is all that is required in the proofs.
Taking C'(0) = 0 simplifies the lower bound t&’(-) > 0 on  [|z2(t) ||y [Pu(t)|ly > z2(t)" Pu(t)
all of RY. Using these properties, the following lemma states = 25 (t)T Puy(t)
that the objective function is also upper-bounded for afietj
and so are the output and state variables.

Lemma 3. For all ¢ > 0, we haveV (a(t)) < V(a(0)). In whereco, > 0 is the smallest singular value @’ restricted
' N oo Ry ' to its range (so it is strictly positive). Letting; be the largest

|an|2 S |an| |un| = QpUp S |un|a

Using the Cauchy-Schwartz inequality, we find

= 2o(t)" 0 s(t) > of [lwa(t)l3,

addition, the output(t) and state variables(t) of the system

. 7 .
(1) are bounded for alk > 0. singular value ofd*, we obtain
. _ T -2
Proof. From (12) and (5b), we have that(a(t)) < 0 for  2(®)lls =[[@ z2()], < o3 [[ally < 3057 [Pu(®)ll; -
almost allz > 0. As a consequencé,(a(t)) is non-increasing Since||du(t)||, is bounded, so i§us(t)|,. On the other hand,
and for allz > 0 we have: using the fact thatbu;(t) = 0, we can compute the time-
derivative of1/2 Hul(t)H; as follows:

: =5 (O3 = wa ()" (1)
Since0 < t andV (a(t)) < 0 for almost alls € (0,t), by the ~ dt2 ?

positivity of the integral we see thaf(a(t)) < V(a(0)) for =uwi(t)" (~ult) +a(t) + 2Ty — T da(t)),
all ¢ > 0. = —uy(t) s (t) + ua () an (t) <0,

Next, we show that the statdt) is bounded. For this result,
we begin by showing that botf®a(t)||, and | ®u(t)|, are
bounded for alt > 0. Condition (13) guarantees th@{a,,) >
0 for all a,, € R, so for allt > 0 we have:

where the last inequality follows from (15). We concludettha
lui(t)]], is also bounded for alt > 0. This shows that
lu®)l, < lur (#), + [|ua(t)]l, is boundedtt > .

Finally, since f(-) is continuous onD and |ju(t)|, is

1Hy — <I>a(t)||§ < V(a(t)) < V(a(0)). bounded for allt > 0, ||f(u(t))|, is also bounded for all

_ 2 _ o t > 0. The elements of the outputt) are either equal to zero
The triangle inequality yields or to f(u(t)), which shows thafla(t)|, is also bounded. O
|®Pa(t)]ly — lylly < V2V (a(0)). Lemma 3 states that(¢) is bounded for allt > 0, which

together with conditions (5b) and (7) guarantee that there

This shows that|®a(t)||, is bounded for alt > 0. For this exists 100 > a > f > 0 such thatvn e I

reason, there must exist a constanht > 0 such that, for all
t>0, a> f(un(t)) > B vt > 0. (16)

(I = @2T)®a(t) + "y, < o1 |®a(t)|l, + || ®"y|[, < C1, The inequalities hold for all ime and the two constamtand

. . . . B will be used in the proof of the first main result.
whereo; > 0 is the largest eigenvalue of the mterconnectloﬁ P

matrix W = ®®7 — . This inequality implies thaf ®u(t)|, C. Subanalycity of the objective function
is also bounded for > 0. Indeed, using the Cauchy-Schwartz Finally, we show thatV'(-) is subanalytic and state the
inequality, the time-derivative of /2 [[®u(t)||; satisfies tojasiewicz inequality for nonsmooth functions.

d1 5 T A function is subanalytic if its graph obeys certain geomet-

7D [Pu(t)ll; = u(t)®” Pu(t) ric properties. This notion involves algebraic manipwaas of

= uT®T®(—u(t) + a(t) — ®Tda(t) + ®Ty)  Sets defined by real-analytic equations and inequalitiesreM

9 precisely, a setd ¢ RY is said to besemianalyticif each

< = [ Pu®)ll; + [Pu(®)ll; Cr point z € RY admits a neighborhoad for which

< = [[@u(®)ll, ([[Put)ll, = C1) . » q
As a consequence, the s¢u € RY s.t. |[Qul, < Cy} is AnN =z eN, fij(w) =0,g:(x) > 0}
attractive, and by continuity||®u(t)|, is bounded for all =1j=1

t > 0. We cannot conclude directly thgit.(¢)]|, is bounded where f;;,9;; : N — R are real-analytic functions for all
because the matri® may be singular. Any vector inits 1 <1i¢ <p, 1< j <gq, andp andq are some integers. The
nullspace can grow unbounded whiléu||, remains bounded. set A is said to besubanalyticif it is locally the projection



of a semianalytic set, i.e. each point ¢ RY admits a
neighborhoodV' such thatAN N = {z € RY, (z,y) € B},
where B is a bounded semianalytic subset®Y x RM for
some M > 1. A function F : RY — R is said to be
subanalyticif its graph, GrafF' = {(z,y) s.t. y = F(z)}, is
a subanalytic subset @&V x R.

From condition (6),f(-) is subanalytic, and s&'(a) is also
subanalytic. Indeed, we can write the graphlof) as the

We fix 0 < 6 < A. Sincea(t;) converges ta*, there exists
K e N such that for allk > K

1 (18)

la(ty) —a™|l, <

SinceV (a(t)) is decreasing and convergesitd, there exists
T > 0 such that, for alt > T

projection onto the first and last component of the set

(19)

BS(1—v)| ™7
4Cw ] ’

1 o
{a,vl,ag,vg,UGRQNJrg ot EHCU—‘I)GHQZUL 0<V(a(t) -V S{

AC(az) = vz, a = az, v=wvi+ vz} where ¢ and v are defined
= (GrafFy x GrafF, x R) ﬂ {a,as,v1,v9,v € RT3 in (16). We now define the time indexp =
min{k € Nst. k> K and T <t¢;}. Time t, exists,
since the sequence of tin{é; }, .y is increasing and goes to
infinity. In addition, ¢,, is such that it satisfies both (18) and
(19). We also define

in (17) anda, g8

s.t. a=az, v="1v1+v2},

where Fi(a) =
subanalytic.
The following theorem gives the Lojasiewicz inequality for
nonsmooth functions [6, Th 3.1.]. It provides some bound on
the decay of the function in terms of its nonsmooth slope. The _ )
nonsmooth slopef F(-) atz € RN is defined as If ¢, = +oo, then for all timet > ¢,, [|a(t) — a”||, < 4. Since
0 can be chosen arbitrarily small, this proves that the output
m(0F (z)) = inf {[[{[|,, £ € OF ()}, a(t) converges to the single fixed poiat. By contradiction,
and represents the smallest norm in the&gtz). assume that, < +oo. This implies that for all times €
[tp, tq), the output trajectory remains within a ball of radius
Theorem (Nonsmooth tojasiewicz inequality)Suppose that § around the fixed point, i.ex(s) € Bs(a*), but leaves this
a functionF : RV — R is subanalytic and continuous RY.  pall at timet,, i.e. [|a(t,) — a*|, = 6. According to (16), we
Then, for anyz € RY, there existv € [0,1), C > 0, and havevn e T,
A > 0 such that

|F(z) — F(z)]" < C m(dF () lan®)lly = [ (un(t) © @)y = Bllan @),

The subanalycity ofi’(-) and the Lojasiewicz inequality which implies that
rely on geometric properties and do not require smoothness
of the function.

%Hy—@a”ﬁ and Fy(a) = AC(a) are

tg =sup{t >t, s.t. Vs € [tp,t) |la(s) —a™|, < d}.

Va € Ba(Z).

la(®)lly = lar @), > B lar ()
IV. PROOF OF THE RESULTS > Bm(dV (ar(t))) = Bm(dV (a(t))).
Having established the lemmas in the previous section, we
are now ready to prove the main results. First, using tfirthermore, from (12) and (16) we see that
tosajiewicz inequality ori/(-), we can prove that the output

trajectories necessarily converge to a single fixed point. V(a(t)) = — Z : 1 lan (1) < 1 Ha(t)||§.
Proof of Theorem 1We begin by showing that/(a(t)) is oo f'un(t) o
convergent. Indeed, by (12), (5b) and (13), we seelthalt))

is decreasing antf (a(t)) > 0 for all ¢ > 0. As a consequence, Putting everything together, we get

V(a(t)) converges as goes to infinity. Denote by/* this

limit. On the other hand, by Lemma 3(¢) is bounded for B a(®)]], m(dV (a(t)))

all t > 0. By the Bolzano-Weierstrass theorem, there exists a o} 2 ’
sequence of increasing timds; such that{a(tx e i

converges. Letz* be the Iimsgt ggﬁth of this coiv(erg;i}nkg@;e— By definition of¢,, and sinces < A for all ¢ € (¢, 1,), we
quence. We will show that the outpuft) converges tar* Navea(t) € Bs(a”) C Ba(a"), and so (17) yields

with a proof by contradiction.

V(a(t)) < — a(o)l < -

By the continuity of V(a(t)), the limit satisfiesV (a*) = ()| «a —V(a(t))
V*. Applying the nonsmooth tojasiewicz inequality 16(-) 2= Bm(0V(a(t)))
ata*, there existv € [0,1), C > 0, andA > 0 such that aC  —V(a(t))

(since—V < 0)

[V(a) — V*" < C m(dV(a)), VYa € Ba(a*). (17)



Then we can find an upper bound for the following integral

ta ta -0.2}
— = 1(s)d ] d
llaty) —a(tp)ll, |/tp a(s)ds Qé/tp lla(s)ll, ds
aC [l V(a(s)) -0.4}f
Py R 0 CIC VR
=T ), W) - vy
aC V(a(tq)) dV -0.6}

B Viaty)) (V=V*)"

O[O 1—v -0.8
= —_ t — *
Ty [Vt =)
~ (V(alty) = V'] -1
OZO 1—v
< t,)) — V*
T (V(a(tp)) = V¥) 12
< g (from (19))
Finally, we see that 05 04 03 02 01 0 01 02
* * t
0 = lla(ty) — a*[l, < lla(ty) — a(ty)]l, + [la(t,) — a”]l, Uig7()
6 & 0
< Z + Z = 5 <. Fig. 3. Convergence of LCA trajectories obtained fiir different initial

o . points and projected onto the space spanned by two randdmayea non-
We have reached a contradiction, which provesthat +co.  zero entries of:t. The color gradient indicates the time evolution.” A red sros

Consequently, for alk > ¢,, we have ||a(t) — G*Hz < §. indicates the fixed point reached by the system.
Since § can be chosen arbitrarily small, this shows that

lim a(t) = ", and thus the output converges. O
t——+o0

. . hereo; > 0 is the largest eigenvalue of the interconnection
oo 2san oot of s secon shons, et 1 a1~ 07 1 Toshow comergence o e, e i
the integral into two parts. Since(t) converges tau*, a(t)

Proof of Theorem 2From Theorem 1, the output convergesonverges td ast — +oo. Thus, for anye > 0, there exists
to some fixed point* € RY. The dynamical equation (1) cana time¢, > 0 such thatyt > t. ||a(t)|, < €. Moreover, since
be written in terms of the distanc&t) = a(t) — a* of the |[[a(t)||, is continuous and goes to zerotagoes to infinity, it
output from the fixed point: admits a maximumu, vt € R. This yields, for allt > 2t.

. T * T * T& ~ te

u(t) = —u(t) — @1 ®a* + Ty + a* — T Pa(t) +af(t). 1), < o @7 - IHQN/O o5 ds

Defining v* = —®T®a* 4+ Ty + a* yields the following ,

equation: +e T - IHQE/ e®ds
a(t) = —u(t) +u* — (8T — I) a(t). < (678 — 1], [~ e_q“

The solutions of this differential equation have the foliogy 4 H(I)Tq) -~ IHzg[l _ €7t+tc}

form for all t > 0:

; < [[@7® — 1)), u[e72 = 7] + |70 — 1],
u(t) =u* +e " (u(0) —u*) + e_t/ e’ (7@ —I)a(s)ds. ) _

0 Since the left term converges t and € can be chosen
The second term—" (u(0) — u*) obviously converges to zero arbitrarily_ small, this shows that the trajectoy:f(t)_ converges
ast goes to infinity. We will also show that the last ternfO the trajectoryu”+e™* (u(0) — u*) ast goes to infinity, and
converges to zero, thus proving thatt) converges tou*. thus, we can conclude thalt) — wu’. 0
Denote byh(t) this integral term, and consider its norm:

et /t e’ (7@ —I)a(s)ds
0

V. SIMULATION
A, =

) To illustrate the theoretical result, we create an example

t for which there exists a subspace of non-isolated solutions

= e‘t/ e* || (7@ — I)a(s)|, ds The matrix® has dimensiom/ = 256 by N = 512 and is
0 , generated uniformly at random from a Gaussian distribution
< e*tal/ e* [a(s)||, ds, (then normalized to have columns with unit norm). A sparse
0 vectora' is generated by selecting uniformly at random the



location of5 non-zero entries. Their amplitudes are generateft]
from a normal distribution and normalized to one. The column
in ® corresponding to one of the non-zero entries is replace[g]
by a random linear combination of the oth&ercolumns and
normalized. The measurements gre- ®a' +n, wheren is a
Gaussian noise with standard deviation- 0.01. The network
is simulated through a discrete approximation in Matlakhwit
a step size 06.001, a time constant of = 0.01 and the soft- [10]
threshold activation function with a threshold set\te= 0.03.
Figure 3 shows the trajectories faf random starting points [11]
projected onto the space spanned by two randomly selected
non-zero entries aff. Despite the solutions being non-isolated
and lying on a linear subspace, the system converges arml
reaches a single fixed point for every starting point.

El

(13]
VI. SUMMARY
[14]
The LCA is a neural network defined by a set of differential

equations. It was shown in [4] that the fixed points of the
network coincide with the set of solutions of the sparse
approximation problem with an appropriate cost function.
However, the Lyapunov approach used in [4] was insufficient
to guarantee convergence of the outputs to a single fixed poin
in the case where the sparse approximation problem had non-
isolated solutions. A technique using the tojasiewicz urade
ity has recently been developed that overcomes this limitat
For networks satisfying a certain type of differential ingibn
with a subanalytic objective, the trajectories can be shtavn
converge to a single fixed point even when there are infinitely
many and non-isolated solutions. However, the charatitzis
of the LCA necessitate a more careful treatment. In pasdicul
its activation function is nonsmooth and possibly unbowhde
and its interconnection matrix may be singular. In this pape
we were able to apply the tojasiewicz inequality when the
activation function is subanalytic to prove convergence of
both the output and state variables without assuming istlat
solutions. This improves on the results obtained in [4] and
provides further evidence that the LCA is a reliable network
to solve this important class of optimization programs,sthu
supporting pursuing its implementation in analog.
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