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ABSTRACT

We considered signal reconstruction with redundant expan-
sions under distributed processing in noisy environments.
Redundant expansions have the ability to reduce noise cor-
rupting the coefficients, but distributed processing schemes
will not be able to take full advantage of the redundancy
present. We apply frame theory and a generalization called
“frames of subspaces” to find conditions when distributed
reconstruction suffers no loss in noise reduction ability, and
we bound performance loss in more general cases.

1. INTRODUCTION

If a signal is represented as an expansion of redundant vec-
tors with coefficients corrupted by noise, the redundancy
can be exploited during reconstruction to reduce the error
in the estimate of the original signal. However, making
optimal use of the inherent noise reduction properties re-
quires a centralized processing approach where all vectors
and coefficients must be known at the same place. There
are important and interesting examples of systems that have
redundant total representations but are limited to distributed
processing environments. One example is a sensor network,
where sensor proximity can produce redundant observations
but constraints prohibit centralized processing. Sensorineu-
ral systems also use redundant representations and process
data in distributed ways. While motivated by such practical
applications, we limit this paper to a general mathematical
analysis of redundant representations.

We show here the potential impact one type of dis-
tributed processing has on the noise reduction properties
of redundant expansions. We find conditions under which
there is no loss in noise reduction ability, and we bound
the performance loss in more general cases. We use frame
theory [3] to describe this notion of a redundant expansion.
To perform our analysis, we employ a recent generalization
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of frames called “frames of subspaces” [1], that links the
properties of a global frame (centralized structures) and lo-
cal collections of frame elements (distributed structures).

2. FRAME THEORY

2.1. Basic definitions

A collection of vectors {φm}M
m=1 is called a frame [3] for

the N -dimensional Hilbert space H if it yields a stable and
complete representation for every signal s ∈ H. This con-
dition is equivalently expressed as an energy preservation
condition resembling the well-known Parseval’s theorem,

A‖s‖2 ≤
∑

m
|〈s, φm〉|2 ≤ B‖s‖2,

where 0 < A ≤ B < ∞ are constants called frame
bounds. Unlike a basis, a frame can have elements that are
linearly dependent. When the frame vectors are normalized
‖φm‖2 = 1 (which we will always assume here), the frame
bounds measure the minimum and maximum redundancy.
A frame is said to be tight when A =B, and it is an or-
thonormal basis if and only if A =B =1. Highly redundant
frames will therefore have A, B � 1.

With linearly dependent elements, there are an infi-
nite number of ways that a signal s can be represented
in terms of linear combinations of frame vectors. How-
ever, a signal is normally decomposed by means of the
analysis operator, F : H → l2 , F s = {〈s, φm〉} = {cm},
which calculates the inner product of the vector with each
frame element to produce a scalar coefficient. The adjoint
of the analysis operator is known as the synthesis oper-
ator, F ∗ : l2 → H , F ∗{cm} =

∑
m

cmφm. The com-
position of F ∗ and F is known as the frame operator,
G : H → H , Gs = F ∗Fs =

∑
m
〈s, φm〉φm. From the

definition of a frame, the analysis operator is bounded for
all ‖s‖ =1:

√
A ≤ ‖Fs‖ ≤

√
B. The frame opera-

tor is therefore also bounded and invertible, with bounds
A ≤ ‖Gs‖ ≤ B and 1

B
≤ ‖G−1s‖ ≤ 1

A
for all ‖s‖ =1.

The frame bounds are A = λmin and B = λmax, where
{λn}N

n=1 are the eigenvalues of G.
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In an orthonormal basis, the frame operator would per-
form perfect signal reconstruction (i.e., G = I). Note that
a consequence of this fact is that reconstruction can be per-
formed in a decentralized way: each coefficient only con-
tributes to the vector that generated it. However, because
frame elements are linearly dependent, the synthesis oper-
ator must be centralized. In fact, because of the inherent
redundancy, there are an infinite number inverse operators
for F . The most commonly used choice of inverse to per-
form signal reconstruction is given by the pseudoinverse
F̃−1 = G−1F ∗, which depends explicitly on all of the vec-
tors in the frame. In detail, the reconstruction operator is

s = F̃−1 (Fs) =
∑

m
〈s, φm〉φ̃m =

∑
m
〈s, φ̃m〉φm,

where φ̃m = G−1φm are known as the dual frame vec-
tors. Notice that in the general case, the multiplication by
G−1 means that each dual vector φ̃m depends on the whole
collection of analysis vectors {φm}M

m=1. Any change to
the set of frame vectors (modification of a vector, or ad-
dition/deletion of a vector) affects the whole collection of
dual vectors needed for the reconstruction. In a tight frame,
the dual vectors are scaled versions of the frame vectors,
φ̃m = 1

A
φm.

2.2. Noise reduction in a frame

It is well known that the pseudoinverse operator F̃−1 is op-
timal among all linear operators at reducing noise in the re-
constructed signal [3]. The amount of noise power elimi-
nated is related to the amount of redundancy in the elements,
which is reflected in the frame bounds [2].

Let {φm}M
m=1 be a frame with bounds (A, B) for an N -

dimensional input space H. Reconstruction coefficients are
corrupted by uncorrelated noise wc(m) having variance σ2,

ŝ =

M∑

m=1

[〈s, φm〉 + wc(m)] φ̃m.

The total MSE of the reconstructed vector ŝ is given by

E
[
‖ŝ − s‖2

]
= σ2

M∑

m=1

‖φ̃m‖2 = σ2

N∑

n=1

1

λn

, (1)

where {λn}N
n=1 are the eigenvalues of the frame operator

G. The MSE per signal dimension is bounded by

σ2

B
≤ E

[
‖ŝ − s‖2

]

N
≤ σ2

A
. (2)

Notice that in reconstructing with the redundant expansion,
the noise is reduced by an amount at least proportional to
the minimum redundancy. From the derivation of equation
(2) from equation (1), it is clear that the bounds in (2) are
not tight bounds. The MSE will only achieve the bounds in
(2) in the case of a tight frame when the bounds are equal.

3. “FRAME OF SUBSPACES” THEORY

To begin analyzing a reconstruction from redundant ele-
ments in a distributed way, we turn to a new theory of
“frames of subspaces” introduced in [1]. Here, signals are
decomposed in terms of overlapping subspaces. A family
of closed subspaces {Wi}L

i=1
is a frame of subspaces for H

if for every signal s ∈ H,

C‖s‖2 ≤
∑

i
‖πi(s)‖2 ≤ D‖s‖2, (3)

where 0 < C ≤ D < ∞ are the frame bounds and πi(·)
is the orthogonal projection onto Wi. From (3) it is clear
that the frame bounds are themselves bounded by the num-
ber of subspaces, L ≥ D. A frame of subspaces is in many
ways analogous to a frame. In frame theory, an input sig-
nal is represented by a collection of scalar coefficients that
measure the projection of that signal onto each frame vector.
In a frame of subspaces, an input signal is represented by a
collection of vector coefficients that represent the projection
(not just the projection energy) onto the each subspace. For-
mally, for a frame of subspaces, the representation space is
defined as V =

{
{si}|si ∈ Wi and si ∈ l2

}
, the space of

all collections of finite-energy vectors containing one repre-
sentative from each subspace.

Analogous to frame theory, a frame of subspaces has an
analysis operator, T : H → V , T s = {πi(s)} = {si}. The
adjoint of the analysis operator is the synthesis operator,
T ∗ : V → H , T ∗{si} =

∑
i
si. The composition of the

analysis and synthesis operators form the frame operator,
U : H → H , Us = T ∗Ts =

∑
i
πi(s). The frame opera-

tor is bounded and invertible, with bounds C ≤ ‖Us‖ ≤ D

and 1

D
≤ ‖U−1s‖ ≤ 1

C
for all ‖s‖ =1. As in section 2.1,

the unique pseudoinverse for T is given by T̃−1 = U−1T ∗.
Frames of subspaces are an interesting mathematical

structure on their own, but one of the fundamental results
of [1] shows that they also provide a link between the prop-
erties of a global frame and local collections of those frame
elements. If each subspace Wi has an associated family
of vectors that locally form a frame for Wi with bounds
(Ai, Bi), then the total collection of vectors globally form a
frame for H. It can be shown that the frame bounds (A, B)
for this global frame are bounded by CAmin ≤ A and
B ≤ DBmax, with equality when the same frame bounds
apply to each local frame.

Because of the link between frames for a local subspace
and the global frame of elements taken together, we can use
frames of subspaces to represent distributed processing. In
this model, the frame vectors local to one subspace are used
to reconstruct the orthogonal projection of the signal into
that subspace while maximizing the noise reduction proper-
ties of the local frame. The collection of reconstructed sig-
nals within each subspace are then used to reconstruct the
original input signal while maximizing the noise reduction
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properties of the frame of subspaces. This subspace-based
reconstruction distributes the processing by only requiring
knowledge of the frame vectors within a subspace to do a lo-
cal reconstruction. Such a scheme adds a level of robustness
to the system because only vectors in one local subspace are
affected if a frame vector is added or removed.

3.1. Subspace noise reduction

In section 2.2 we investigated the noise reduction proper-
ties inherent in the redundancy between frame vectors. To
evaluate a distributed reconstruction scheme where redun-
dant subspace representations are combined, we must deter-
mine the noise reduction properties inherent in a frame of
subspaces. The redundancy between the subspaces means
that (just as in section 2.2) we can use the pseudoinverse to
perform reconstruction and reduce the presence of additive
noise in the decomposition.

Let {Wi}L
i=1

be a frame of subspaces for the space H
with bounds (C, D). The “coefficients” in this decomposi-
tion are the collection of vectors {si} ∈ V , where each vec-
tor is the projection of the input signal s onto a subspace,
si = πi(s). Consider the case when the vector coefficients
are corrupted independently with a noise vector,

ŝ = U−1
∑

i
(si + wi) ,

where the vector wi ∈ Wi has covariance matrix Γi. The
linearity of T̃−1 implies that (ŝ − s) = U−1

∑
i
wi. Define

w̃ =
∑

i
wi, so that w̃ has covariance matrix Γ̃ =

∑
i
Γi.

Because multiplication affects the covariance in a quadratic
way, the covariance of U−1w̃ is given by U−1Γ̃U−1. The
total MSE of the reconstructed signal therefore equals the
trace of the covariance,

E
[
‖ŝ − s‖2

]
= Tr

[
U−1Γ̃U−1

]
. (4)

As mentioned earlier, U−1 is a bounded operator with
bounds

(
1

D
, 1

C

)
. Simple calculations using this fact give

bounds on the MSE per signal dimension,

Tr
[
Γ̃
]

ND2
≤ E

[
‖ŝ − s‖2

]

N
≤

Tr
[
Γ̃
]

NC2
. (5)

Notice that the natural reconstruction for a frame of sub-
spaces also reduces the noise in the reconstructed signal by
an amount that depends on the minimum redundancy. As
before, the bounds in (5) are not tight bounds. The MSE
will only achieve the extreme bounds in (5) when the frame
of subspaces is tight (C = D).

3.2. Noise reduction under distributed processing

We now have the tools available to consider the noise reduc-
tion capability of a redundant expansion under distributed

processing requirements. Let {Wi}L
i=1

be a frame of sub-
spaces for the space H, with frame bounds (C, D). Let
each subspace be spanned by a collection of Mi vectors that
locally form a frame for Wi with frame bounds (Ai, Bi).
When taken together, these vectors form a frame for H with
bounds (A, B). A signal s is represented by all of the vec-
tors in the global frame, and coefficients are corrupted by
additive noise with subspace-dependent variance σ2

i
.

For distributed reconstruction, local frame vectors are
first used to reconstruct the projection of the signal onto
each subspace, ŝi. From equation (2), we have a bound
on the total MSE when reconstructing each si = πi(s),
σ

2

i
N

Bi
≤ E

[
‖ŝi − si‖2

]
≤ σ

2

i
N

Ai
. Distributed reconstruc-

tion ŝd is completed by using each ŝi as a corrupted coeffi-
cient in the frame of subspaces. The previous bound tells us
that we can view the subspace projections si as being cor-
rupted independently by an additive noise vector wi ∈ Wi,
with covariance matrix Γi that has bounded total variance
σ

2

i
N

Bi
≤ Tr [Γi] ≤ σ

2

i
N

Ai
. If we define Γ̃ =

∑
i
Γi, applying

equation (5) bounds the MSE per signal dimension,

Lσ2

min

BmaxD2
≤ 1

D2

∑
i

σ2

i

Bi

≤ E
[
‖ŝd − s‖2

]

N

· · · ≤ 1

C2

∑
i

σ2

i

Ai

≤ Lσ2
max

AminC2
.

(6)

Frame reconstruction with our distributed processing
constraint has the power to reduce noise in the reconstructed
signal by an amount that depends on the minimum redun-
dancy of both the frame of subspaces, and the individual
local frames that span the subspaces. From the derivation
of this bound, it is clear that these bounds are also not tight
and are only achieved in the special case when the frame of
subspaces is tight (C =D) and the local frames are all tight
with the same bounds (Ai =Amin =Bi =Bmax for all i).

4. COMPARISON OF CENTRALIZED AND
DISTRIBUTED PROCESSING

4.1. Comparison of bounds

Section 2.2 mentions that the pseudoinverse operator for the
global frame is the unique linear operator that achieves max-
imum noise reduction. Consequently, we know that no other
linear reconstruction scheme (including the distributed pro-
cessing of section 3.2) can perform better than centralized
processing. In fact, the distributed reconstruction operator
is optimal only over linear operators that factor (using local
frame and synthesis operators Gi and F ∗

i
) into

T̃−1 =
[

U−1 . . . U−1
]



G−1

1
F ∗

1

...
G−1

L
F ∗

L


 .
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Fig. 1. An example of the noise reduction properties for
in centralized and distributed reconstruction. Vectors are
randomly placed in R

3 and separated into five subspaces.

It is interesting to consider how much of a penalty in
noise reduction a distributed processing scheme incurs com-
pared to centralized processing. From section 2.2, consid-
ering the collection of local frames together yields a global
frame for H with lower and upper bounds A ≥ CAmin and
B ≤ DBmax. Using a simple extension of equation (2)
(with unequal noise power) tells us that a centralized re-
construction of s using the global frame directly, ŝc, would
yield an upper bound on the MSE per signal dimension of
E[‖ŝc−s‖2]

N
≤ σ

2

max

A
≤ σ

2

max

CAmin

. Comparing this bound to the
MSE upper bound in (6) when using the distributed scheme,
we see that (because L ≥ C) the upper bound using the cen-
tralized approach is better than the distributed reconstruc-
tion by a factor of L

C
. While these are not tight bounds on

the error, they hint at the potential for the distributed recon-
struction to perform worse than the centralized scheme and
give a bound on the performance reduction.

It is also interesting to consider conditions under which
the noise reduction ability is the same for distributed and
centralized processing. Consider the case when all of the
local frames have the same number of vectors

(
Mi = M

L

)

and are tight frames with the same frame bounds, Ai =
Amin = Bi = Bmax for all i. In this case, the global
frame has frame bounds A = CAi and B = DBi. If
the frame of subspaces is also tight (C = D), the global
frame will additionally be tight with bounds A = B = M

N
.

If the noise has equal power in each subspace (σ2
i = σ2),

then we can directly calculate the MSE per signal dimen-
sion under both processing schemes and find that they are

equal,
E[‖ŝc−s‖2]

N
=

E[‖ŝd−s‖2]
N

= σ
2
N

M
. Though the con-

ditions proposed here for equal noise reduction may seem
restrictive, a result from [2] regarding random frames indi-
cates that frames will become tight asymptotically as more
random vectors are added. Therefore, systems where ran-

dom vectors are randomly assigned to a local subspace will
asymptotically meet the conditions for achieving the opti-
mal (centralized) noise reduction.

4.2. Example

Figure 1 compares the noise reduction properties of a cen-
tralized and distributed reconstruction in H = R

3. Frame
vectors were generated at random (uniformly distributed in
R

3) and assigned to one of five possible subspaces. Central-
ized and distributed reconstructions using noisy coefficients
(σ2

i
= 1) are performed and the average reconstruction er-

ror is plotted. The centralized scheme always outperforms
the decentralized scheme, though the performance tends to
become similar as more vectors are added and the frames
become tighter.

5. CONCLUSIONS

In redundant expansions where distributed reconstruction is
required, assessing the noise reduction capability is an im-
portant consideration. It would be intuitive to think that dis-
tributed reconstruction would always incur a penalty over
the optimal centralized case. However, in this paper we have
shown at least one condition (there may be more) where the
distributed system can be constructed to suffer no penalty
compared to centralized reconstruction. Additionally, we
provide bounds on the performance penalty in the more gen-
eral case when distributed reconstruction is suboptimal.

The notion of a frame of subspaces has played an impor-
tant role in determining the performance difference between
our two cases, and this mathematical formalism may prove
useful in future studies of distributed systems. However, our
analysis is very abstract and it is not immediately clear how
to apply these results to practical situations. While there are
obvious connections between frames and filterbanks, we are
currently working to understand more about how this anal-
ysis can apply to problems in distributed sensing, feature
extraction and sensory neuroscience.
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