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ABSTRACT

Concentration of measure inequalities are at the heart of
much theoretical analysis of randomized compressive opera-
tors. Though commonly studied for dense matrices, in this
paper we derive a concentration of measure bound for block
diagonal matrices where the nonzero entries along the main
diagonal blocks are i.i.d. subgaussian random variables. Our
main result states that the concentration exponent, in the best
case, scales as that for a fully dense matrix. We also identify
the role that the energy distribution of the signal plays in dis-
tinguishing the best case from the worst. We illustrate these
phenomena with a series of experiments.

Index Terms— Compressive Sensing, concentration of mea-
sure, Johnson-Lindenstrauss lemma, block diagonal matrices

1. INTRODUCTION

With many signal processing applications demanding ever
greater volumes of higher-resolution data, a significant amount
of research in recent years has involved compressive linear
measurement operators. Lettingx ∈ R

N denote a signal,
we represent a compressive linear operator by anM × N
matrix Φ (M < N ). Given a sufficient number of measure-
mentsy = Φx, the goal in the field of compressive sensing
(CS) [1, 2] is to recoverx from y.

Randomized designs for the compressive operatorΦ are
particularly appealing because of their universal applicability
to different signals. A randomM ×N matrix populated with
independent and identically distributed (i.i.d.) Gaussian en-
tries, for example, can be used in CS to acquire any signal that
has a sparse decomposition in some basis (with high proba-
bility, and supposing again thatM is sufficiently large [1, 2]).
This universality covers not only different signals but differ-
ent applications: the same randomized constructions used in
CS can also be for nearest neighbor search, detection, classi-
fication, estimation, and so on [3, 4].

One of the concepts at the heart of theoretical analysis of
randomized compressive operators is a phenomenon known
as concentration of measure [5]. Put simply, for any fixed
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signalx ∈ R
N a suitable randomizedΦ will approximately

preserve the norm ofx with high probability. More formally,
a typical result is the following:1

Lemma 1.1. [6] Let Φ be anM × N matrix with i.i.d. sub-
gaussian entries having variance1

M
. Then there exists a con-

stantC > 0 such that, for anyǫ ∈ (0, 1),

P (
∣

∣‖Φx‖2
2 − ‖x‖2

2

∣

∣ > ǫ‖x‖2
2) ≤ 2 exp(−CMǫ2). (1)

Among the consequences of this powerful result is the
Johnson-Lindenstrauss (JL) lemma [3], which states that for
a finite cloud of pointsQ ⊂ R

N ,

(1 − ǫ)‖u − v‖2 ≤ ‖Φ(u − v)‖2 ≤ (1 + ǫ)‖u − v‖2 (2)

holds for allu, v ∈ Q with high probability supposing that
M = O(log(|Q|)ǫ−2). Another consequence is the Re-
stricted Isometry Property (RIP) [7] in CS, which states that
(2) holds for all pairsu, v of K-sparse signals inRN with high
probability supposing thatM = O(K log(N/K)ǫ−2) [6, 8].

Unfortunately, in many signal acquisition settings, one
may not have the luxury of using a dense measurement op-
eratorΦ as described above. With a long video sequence,
for example, it may be desirable for each measurement to
come only from a single frame, rather than from the entire
video [9]. Similarly, in a network of sensors observing signals
relating to a common phenomenon, it may be desirable for
each sensor to record measurements of its own incident sig-
nal, rather than have each measurement depend on the whole
ensemble [10]. In settings such as these, we may envision
the signalx ∈ R

NJ as representing the concatenationx =
[xT

1 xT
2 · · ·xT

J ]T of J component signals{xj}J
j=1 ⊂ R

N and
the measurement vectory ∈ R

MJ as representing the con-
catenationy = [yT

1 yT
2 · · · yT

J ]T of the vectorsyj = Φjxj ,
whereΦj is a matrix of sizeM × N that measures only sig-
nal j. It follows thaty = Φx, where the resultingMJ × NJ
measurement matrixΦ is zero everywhere except for blocks
along the main diagonal:

Φ =

0

B

B

B

@

Φ1

Φ2

. . .
ΦJ

1

C

C

C

A

. (3)

1Note that subgaussian random variables are defined in Definition 2.1.
Also, Lemma 1.1 follows from Theorem 3.1 by settingJ = 1.



In this paper we derive a concentration of measure bound
for such matrices where the nonzero entries of the block di-
agonal matrix are i.i.d. subgaussian random variables. Our
main result, detailed in Theorem 3.1, essentially states that
the probability of concentration behaves as

P (
∣

∣‖y‖2
2 − ‖x‖2

2

∣

∣ > ǫ‖x‖2
2) ≤ 2 exp(−CMΛǫ2),

whereΛ = Λ(x) is a term that depends on the energy distribu-
tion of x. At one extreme, when the energy ofx is uniformly
spread across its component signals{xj}, we haveΛ(x) = J
and the concentration of measure exponent scales exactly as
in (1) for a fully dense random matrix; that is, it scales with
the total number of measurements, which in this case equals
MJ . At the other extreme, however, when the energy ofx is
concentrated in a single component signal, we haveΛ(x) = 1
and the measurement operator effectiveness is diminished.

2. BACKGROUND

In this section we provide some background on subgaussian
random variables [11] and their properties.

Definition 2.1. A random variablew is subgaussianif ∃a ≥ 0
such that

Eetw ≤ exp

(

1

2
a2t2

)

for all t ∈ R.

The quantity

τ(w) := inf{a ≥ 0 : Eetw ≤ exp(
1

2
a2t2) for all t ∈ R}

is known as theGaussian standardof w.

With this definition and Jensen’s inequality we infer that
subgaussian random variables must always be centered, i.e.,
Ew = 0, and with some simple functional analysis we can
also see that the varianceEw2 ≤ τ2(w). In [11], a sub-class
of subgaussian random variables is introduced as follows.

Definition 2.2. A subgaussian random variablew is strictly
subgaussianif Ew2 = τ2(w).

Examples of strictly subgaussian random variables in-
clude Gaussian random variables,±1 Bernoulli random vari-
ables (p = 1

2 ) and uniform random variables on[−1, 1].
As with Gaussian random variables, linear combinations

of i.i.d. subgaussian random variables are also subgaussian.
We provide a more formal statement in the following lemma.

Lemma 2.1. [11, Theorem 1 and Lemma 3]Let β ∈ R
Z

be a fixed vector, and supposew(1), w(2), . . . , w(Z) are a
collection of i.i.d. subgaussian random variables with Gaus-
sian standards all equal toτ(w). Then the quantityv :=
∑Z

i=1 β(i)w(i) is a subgaussian random variable with Gaus-
sian standardτ(v) ≤ τ(w)‖β‖2.

We also need the following lemma regarding the tail dis-
tribution of the square of subgaussian random variables.

Lemma 2.2. [11] Suppose thatw is a subgaussian random
variable with Gaussian standardτ(w). Then

P (|w|2 > t) ≤ 2 exp

(

− t

2τ2(w)

)

for all t ≥ 0.

This property of subgaussian random variables allows us
to use the following important theorem.

Theorem 2.1. [12] Let X1, . . . , XL be independent Ba-
nach space valued random variables withP{‖Xi‖ > t} ≤
a exp{−αit} for all t and i. Let d ≥ maxi α−1

i and
b ≥ a

∑L

i=1 α−2
i . Then settingS =

∑L

i=1 Xi we have

P{|‖S‖ − E‖S‖| > t} ≤
{

2 exp{−t2/32b}, 0 ≤ t ≤ 4b
d

2 exp{−t/8d}, t ≥ 4b
d

.

3. MAIN RESULT

Let Φ be as in (3), where eachΦj has sizeM × N . For i ∈
{1, . . . , M}, let φT

j,i denote rowi of Φj , and letyj(i) denote
the ith component of measurement vectoryj . It follows that
yj(i) = 〈φj,i, xj〉 =

∑N

n=1 φj,i(n)xj(n). We will also have
use for the following vector describing the energy distribution
acrossx. For anyx ∈ R

NJ , we define

λ = λ(x) := [‖x1‖2
2 ‖x2‖2

2 · · · ‖xJ‖2
2]

T ∈ R
J .

Equipped with this notation, we now present our main result.

Theorem 3.1. Supposex ∈ R
NJ . Let {Φj}J

j=1 be random
M × N matrices populated with i.i.d. subgaussian entries
having varianceσ2 = 1

M
and Gaussian standardτ2(φ) =

cσ2, wherec ≥ 1, and letΦ be anMJ × NJ block diagonal
matrix as defined in (3). Then

P (
∣

∣‖Φx‖2
2 − ‖x‖2

2

∣

∣ > ǫ‖x‖2
2)

≤







2 exp{− Mǫ2‖λ‖2

1

256c2‖λ‖2

2

}, 0 ≤ ǫ ≤ 16c‖λ‖2

2

‖λ‖∞‖λ‖1

2 exp{− Mǫ‖λ‖1

16c‖λ‖∞ }, ǫ ≥ 16c‖λ‖2

2

‖λ‖∞‖λ‖1

.
(4)

Proof. Let y = Φx. Each entry ofφ1,1, . . . , φJ,m are i.i.d.
subgaussian random variables having Gaussian standard
τ(φ). The expectation of each measurement squared can

be written asEy2
j (i) = E

(

∑N

n=1 φj,i(n)xj(n)
)2

. Since the

φj,i(n) are zero mean and independent, all the cross product
terms are equal to zero, which then gives us

Ey2
j (i) = E

N
∑

n=1

φ2
j,i(n)x2

j (n) = σ2‖xj‖2
2 =

1

M
‖xj‖2

2.



Furthermore,

E‖y‖2
2 =

J
∑

j=1

M
∑

i=1

Ey2
j (i) =

J
∑

j=1

‖xj‖2
2 = ‖x‖2

2.

We would like to find the probability that
∣

∣‖y‖2
2 − ‖x‖2

2

∣

∣ >
ǫ‖x‖2

2. SinceE‖y‖2
2 = ‖x‖2

2, this is equivalent to the con-
dition that

∣

∣‖y‖2
2 − E‖y‖2

2

∣

∣ > ǫE‖y‖2
2. By Lemma 2.1, each

yj(i) is a subgaussian random variable with Gaussian stan-
dardτ(yj(i)) ≤ τ(φ)‖xj‖2. By Lemma 2.2 we have∀t ≥ 0,

P (y2
j (i) > t) ≤ 2 exp

(

− t

2τ2(yj(i))

)

≤ 2 exp

(

− t

2τ2(φ)‖xj‖2
2

)

.

We apply Theorem 2.1 for the random variablesy2
j (i), ∀i, j,

with a = 2 andα−1
j (i) = 2τ2(φ)‖xj‖2

2 = 2c
M
‖xj‖2

2, to com-

pute the concentration result for‖y‖2
2. Note thatα−1

j (i) is

constant for a fixedj. Hence, ford ≥ maxi,j α−1
j (i) =

2c
M

maxj ‖xj‖2
2 andb ≥ a

∑

j,i α−2
j (i) = 8c2

M

∑

j ‖xj‖4
2,

P (
∣

∣‖y‖2
2 − ‖x‖2

2

∣

∣ > ǫ‖x‖2
2) ≤







2 exp{− ǫ2‖x‖4

2

32b
}, 0 ≤ ǫ ≤ 4b

d‖x‖2

2

2 exp{− ǫ‖x‖2

2

8d
}, ǫ ≥ 4b

d‖x‖2

2

.
(5)

Note that‖x‖2
2 = ‖λ‖1 and ‖x‖4

2 = ‖λ‖2
1. Substituting

d = 2c
M

maxj ‖xj‖2
2 = 2c

M
‖λ‖∞ andb = 8c2

M

∑

j ‖xj‖4
2 =

8c2

M
‖λ‖2

2 into (5) completes the proof.

As we will be frequently concerned with applications
whereǫ is small, let us consider the first of the cases given in

(4). We defineΛ(x) =
‖λ‖2

1

‖λ‖2

2

and note that for anyx ∈ R
N ,

(a) 0 500 1000
−0.2

0

0.2

Signal 1

(b)
0 10

0

0.2

0.4
λ(x) for sig. 1

block number, jbl
oc

k 
en

er
gy

 ||
x j|| 22

(c) 0 500 1000
−0.2

0

0.2

Signal 2

(d)
0 10

0

0.2

0.4
λ(x) for sig. 2

block number, jbl
oc

k 
en

er
gy

 ||
x j|| 22

Fig. 1. (a) Signal with uniform energy acrossJ = 16 blocks.
(b) λ(x) for signal 1. (c) Signal with nonuniform energy across
J = 16 blocks. (d)λ(x) for signal 2.

1 ≤ Λ(x) ≤ J , where equality on the left is obtained when
‖xj‖2

2 = 0 for all but onej, and equality on the right is ob-
tained when all‖xj‖2

2 are equal. (This follows from the stan-
dard relation that‖z‖2 ≤ ‖z‖1 ≤

√
J‖z‖2 for all z ∈ R

J .)
The first case (Λ = 1) is unfavorable, and implies that com-
pared to a full denseΦ of size MJ × NJ (for which the
concentration exponent would scale withMJ), we diminish
the effectiveness of the measurements by a factor ofJ ; this is
to be expected since onlyM measurements will be nonzero.
The second case (Λ = J) is favorable as—remarkably—the
concentration exponent scales at the same rate as for a full
denseΦ of sizeMJ × NJ . Incidentally, for the second case
in (4), it is worth noting that1 ≤ ‖λ‖1

‖λ‖∞ ≤ J , with the extreme
values attained in the same two cases mentioned above. So,
in both cases the critical scaling of the exponent is between
M · f(ǫ) andMJ · f(ǫ) wheref(ǫ) is some function ofǫ.

Two final comments about Theorem 3.1 are in order. First,
the bounds in (4) are most favorable for strictly subgaussian
random variables, for whichc = 1. Second, regarding the
demarcation between the two cases in (4), one can show that
2(

√
J−1)

J−1 ≤ ‖λ‖2

2

‖λ‖∞‖λ‖1

≤ 1. For J ≥ 2, the left hand term

obeys2(
√

J−1)
J−1 ≥ 1√

J
implying that the upper case is guaran-

teed to include at least0 ≤ ǫ ≤ 16c√
J

.

4. EXPERIMENTS

Let us illustrate the concentration phenomena suggested in
Theorem 3.1 by considering two specific signals. The plots
we show are typical of our experiments with other signals.

To begin, we randomly construct a signal of length1024
having uniform energy over each ofJ = 16 blocks. The sig-
nal x is plotted in Figure 1(a) and the uniform energy distri-
bution is shown in the plot ofλ(x) in Figure 1(b). Fixing this
signal, we first generate a series of randomΦ matrices having
size64 × 1024. Each matrix is dense: the entries are chosen
as i.i.d. zero-mean Gaussian random variables with variance
1/64. Over the course of 10000 randomly generatedΦ, we
plot in Figure 2(a) a histogram of‖Φx‖2/‖x‖2. (Ideally, we
desire this quantity to be sharply concentrated around1.)

Using the same fixed signalx, we now consider block
diagonal matricesΦ of the form (3), where each of theJ = 16
blocks on the main diagonal has sizeM × N = 4 × 64 and
is populated with i.i.d. zero-mean Gaussian random variables
with variance1/4. The resultingΦ matrices have sizeMJ ×
NJ = 64 × 1024, and because our test signal hasΛ(x) =
J , Theorem 3.1 implies that concentration exponent scales at
the same rate as for a full denseΦ of size64 × 1024. We
plot in Figure 2(b) a histogram of‖Φx‖2/‖x‖2. Despite the
dramatically different structure of the sensing matrices,the
concentration of measure behavior for this signal is virtually
identical to the case of fully dense matrices. For each type of
matrix, we plot in Figure 3 as a function ofǫ the percent of
trials for which(1−ǫ) ≤ ‖Φx‖2/‖x‖2 ≤ (1+ǫ). The curves
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Fig. 2. Histogram of‖Φx‖2/‖x‖2 for fixedx across 10000 randomly generated matricesΦ. (a) Uniform energy signal, fully dense64×1024
Φ. (b) Uniform energy signal, block diagonal64× 1024 Φ. (c) Nonuniform energy signal, fully dense64× 1024 Φ. (d) Nonuniform energy
signal, block diagonal64 × 1024 Φ. (e) Nonuniform energy signal, block diagonal192 × 1024 Φ.
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Fig. 3. The percent of trials for which(1 − ǫ) ≤ ‖Φx‖2/‖x‖2 ≤
(1 + ǫ). Note that all curves overlap except for the nonuniform en-
ergy signal with block diagonalΦ.

for the two types of matrices are indistinguishable.
Now, we consider instead a signal which has nonuniform

energy distribution. The signalx is plotted in Figure 1(c) and
λ(x) is plotted in Figure 1(d). Fixing this signal, we plot in
Figure 2(c) a histogram of‖Φx‖2/‖x‖2 where the sensing
matricesΦ are of size64 × 1024 and are fully dense. From
this histogram and the plot in Figure 3 we see that the concen-
tration of measure behavior for this signal is virtually identical
to the case of the signal with uniform energy.

Next, using this same signalx with nonuniform energy,
we plot in Figure 2(d) a histogram of‖Φx‖2/‖x‖2 where the
sensing matricesΦ are of sizeMJ × NJ and have block di-
agonal structure withJ = 16, M = 4, andN = 64. In this
case, because our signal hasΛ(x) = 5.335, Theorem 3.1 sug-
gests that the effectiveness of our matrix will be diminished.
Based on the histogram and on Figure 3, we observe that the
concentration of‖Φx‖2/‖x‖2 is decidedly less sharp.

Finally, using this same signalx, we consider constructing
block diagonal matrices that contain extra rows to compensate
for the fact thatΛ(x) < J . In particular, we consider matrices
Φ of sizeM ′J × NJ with J = 16, M ′ = 12, andN = 64.
Applying Theorem 3.1, we see thatM ′Λ(x) = 64, and so
we obtain the same concentration exponent as for a full dense
Φ of size64 × 1024. Remarkably, based on Figure 2(e) and
Figure 3, we see that the concentration of measure behavior
for this nonuniform energy signal with the192 × 1024 block
diagonalΦ matrix is indistinguishable from the case of the

uniform energy signal with the64 × 1024 dense Gaussian
Φ matrix. This suggests that the factorΛ(x) is playing an
important and precise role in dictating the concentration of
measure phenomena for block diagonal matrices.

5. CONCLUSION

We have derived a concentration of measure bound for block
diagonal matrices composed of i.i.d. subgaussian random
variables. Our main result, Theorem 3.1, shows that the
concentration exponent may scale as that for a fully dense
matrix. We have also identified the role that the signal energy
distribution (i.e.,Λ(x)) plays in this concentration exponent.

Using this bound to prove results such as the JL lemma
or the RIP will require applying Theorem 3.1 to differences
between signals in a setQ or to differences between sparse
signals. Depending on the application, these difference vec-
tors can be expected to take either large or small values of
Λ(x). Understanding the role of signal energy distribution
for these settings will be critical for successful applications,
and this remains a topic of ongoing research.
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