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ABSTRACT signalz € RY a suitable randomized will approximately

Concentration of measure inequalities are at the heart &resgrve the norm of with hlgh probability. More formally,
a typical result is the following:

much theoretical analysis of randomized compressive epera
tors. Though commonly studied for dense matrices, in thi¢emma 1.1. [6] Let ® be an}M x N matrix with i.i.d. sub-
paper we derive a concentration of measure bound for blocgaussian entries having variangg. Then there exists a con-
diagonal matrices where the nonzero entries along the maftantC > 0 such that, for any € (0, 1),

diagonal blocks are i.i.d. subgaussian random variables. O P(\||<I>:v|\§ _ qug‘ > e||z|2) < 2exp(—CMe?). (1)
main result states that the concentration exponent, ingse b

case, scales as that for a fully dense matrix. We also igentif ~ Among the consequences of this powerful result is the
the role that the energy distribution of the signal playsig d Johnson-Lindenstrauss (JL) lemma [3], which states that fo
tinguishing the best case from the worst. We illustrateehesa finite cloud of pointg) ¢ RY,

phenomena with a series of experiments.
(L=ellu—vllz < [|®(u—2v)2 < (T +e)llu—vl2 (2

Index Terms— Compressive Sensing, concentration of mea-

sure, Johnson-Lindenstrauss lemma, block diagonal reatric holds for allu, v € @ with high probability supposing that

M = O(log(|Q|)e~?). Another consequence is the Re-
stricted Isometry Property (RIP) [7] in CS, which statest tha
1. INTRODUCTION (2) holds for all pairs:, v of K-sparse signals iR with high
probability supposing that/ = O(K log(N/K)e=?) [6, 8].
With many signal processing applications demanding ever ynfortunately, in many signal acquisition settings, one
greater volumes of higher-resolution data, a significardam may not have the luxury of using a dense measurement op-
of research in recent years has involved compressive line@ratord as described above. With a long video sequence,
measurement operators. Lettinge RY denote a signal, for example, it may be desirable for each measurement to
we represent a compressive linear operator by\ark N come only from a single frame, rather than from the entire
matrix ® (M < N). Given a sufficient number of measure- yideo [9]. Similarly, in a network of sensors observing sitgn
mentsy = &z, the goal in the field of compressive sensingrelating to a common phenomenon, it may be desirable for
(CS) [1, 2] is to recover from y. each sensor to record measurements of its own incident sig-
Randomized designs for the compressive oper&tare  ng|, rather than have each measurement depend on the whole

particularly appealing because of their universal applit®  ensemble [10]. In settings such as these, we may envision
to different Signals. Arandom/ x N matrix pOpUlatEd with the Signah; c RNJ gs representing the concatenation=

independent and identically distributed (i.i.d.) Gaussia- [«] 23 .- 2T)T of J component signalér;}7_, ¢ RY and
tries, for example, can be used in CS to acquire any signél thghe measurement vectgre RM” as repreéenting the con-
has a sparse decomposition in some basis (with high prObeatenatiory = ¥ 4T - -yT)T of the vectorgy; = ¥, x;

. . . . .. - J J]
bility, and supposing again thaf is sufficiently large [1, 2]).  \whered, is a matrix of sizell x N that measures only sig-
This universality covers not only different signals butfeiif nal j. It follows thaty = &z, where the resulting/.J x N.J

ent applications: the same randomized constructions wsed jye3surement matri@ is zero everywhere except for blocks
CS can also be for nearest neighbor search, detectionl—clasgmng the main diagonal:

fication, estimation, and so on [3, 4].

One of the concepts at the heart of theoretical analysis of & o
randomized compressive operators is a phenomenon known P — 2 . @)
as concentration of measure [5]. Put simply, for any fixed N

o,
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In this paper we derive a concentration of measure bound We also need the following lemma regarding the tail dis-
for such matrices where the nonzero entries of the block ditribution of the square of subgaussian random variables.

agonal matrix are i.i.d. subgaussian random variables. Our . )
main result, detailed in Theorem 3.1, essentially statas thLeémma 2.2. [11] Suppose that is a subgaussian random

the probability of concentration behaves as variable with Gaussian standardw). Then
P(|llyll3 = llzll3] > ellz]3) < 2exp(~CMAE?), P(lw]> > t) < 2exp <—2%()) for all t > 0.
T\W

whereA = A(z) is aterm that depends on the energy distribu-

tion of . At one extreme, when the energy:ofs uniformly This property of subgaussian random variables allows us
spread across its component sigrals}, we haveA(z) = J g yse the following important theorem.
and the concentration of measure exponent scales exactly as

in (1) for a fully dense random matrix; that is, it scales withTheorem 2.1. [12] Let X;,...,X; be independent Ba-
the total number of measurements, which in this case equatch space valued random variables wit || X;|| > ¢} <
M J. Atthe other extreme, however, when the energy &  gexp{—a;t} for all ¢t andi. Letd > max;o; ' and
concentrated in a single componentsignal, we g =1 ;> Z-L o; 2. Then settings = Z-L X, we have

: : P = i=1"i i=1“*1
and the measurement operator effectiveness is diminished.
2exp{—t?/32b}, 0<t< 2

2exp{—t/8d}, t> 1

P{l||S|| — E||S tl <
) BACKEROUND (1S - ElS|| > }_{

In this section we provide some background on subgaussian

random variables [11] and their properties. 3. MAINRESULT

Definition 2.1. A random variablev is subgaussiaifi3a > 0 Let ® be as in (3), where each; has sizeM x N. Fori €

such that {1,..., M}, let ngTZ denote row; of &;, and lety; (i) denote
1 thei*™ component of measurement vectgr It follows that
Ec'™ < exp (§a2t2) for allt € R. y; (@) = (pj0,25) = SN ¢j.i(n)z;(n). We will also have
use for the following vector describing the energy distiidnu
The quantity acrosse. For anyz € RY/, we define

_ . 2 2 2T J
T(U}) — inf{a >0: Eet’w < exp(%GQtQ) forallt € R} A= A(I) T [Hx1H2 HZC2||2 e ||IJ||2] eR7.

. . Equipped with this notation, we now present our main result.
is known as th&aussian standaaf w. quipp P

Theorem 3.1. Suppose: € RN/, Let{®;}/_, be random

x N matrices populated with i.i.d. subgaussian entries
having variancer? = 4 and Gaussian standare?(¢) =
co?, wherec > 1, and let® be anM J x N J block diagonal
matrix as defined in (3). Then

With this definition and Jensen’s inequality we infer that
subgaussian random variables must always be centered, i.
Ew = 0, and with some simple functional analysis we can
also see that the varian®av? < 72(w). In [11], a sub-class
of subgaussian random variables is introduced as follows.

Definition 2.2. A subgaussian random variable is strictly p(‘ ||q)x|\§ — HfCHg‘ > GHCCHg)
HE 2 _ 2
subgaussiaii Ew? = 74 (w). M2 L6e| A2
2exp{—gzeanz ), 0 <€ < oo
; ; : : 256¢2[|A[13 1Moo A1 (4)
Examples of strictly subgaussian random variables in- ) MelAllx S 16| A2
clude Gaussian random variablas, Bernoulli random vari- exp{— 16¢f[A oo b€z Moo 1AL

ables p = 1) and uniform random variables ¢n 1, 1]. N

As with Gaussian random variables, linear combination§r0of. Lety = ®z. Each entry oy 1, ..., ¢, are iid.
of i.i.d. subgaussian random variables are also subgaussigUPgaussian random variables having Gaussian standard
We provide a more formal statement in the following lemma.7(¢)- The expectation of each measurement squared can

2

. . N .
Lemma 2.1. [11, Theorem 1 and Lemma 3Jet 3 € RZ be written asiZy}(i) = E (Zn:l 05.4(n); (n)) - Since the
be a fixed vector, and supposg1),w(2),...,w(Z) are a ¢;.:(n) are zero mean and i_ndepende_nt, all the cross product
collection of i.i.d. subgaussian random variables with Gau terms are equal to zero, which then gives us
sian standards all equal te(w). Then the quantity := N
Zizzl B(i)w(i) is a subgaussian random variable with Gaus- g 2,y — g 2 20y 2p 2 Ly e
S e o) < Bl y3(0) ;%mmw(wMQMmm



Furthermore,

J M J
Elyl3 =Y Eyi(i)=>_ |l
Jj=1

j=1i=1

2 = ll=]3-

We would like to find the probability thalt|y||3 — [|z[|3]| > : e
ellz|2. SinceE|y|2 = |jz||2, this is equivalent to the con- concentration exponent would scale with.J), we diminish

dition that|[[y[|3 — El|y[3| > Elly13.

1 < A(z) < J, where equality on the left is obtained when
llz;]|3 = 0 for all but onej, and equality on the right is ob-

tained when al||z;|3 are equal. (This follows from the stan-
dard relation thatz||> < |z|l1 < V/J|z||2 forall z € R’.)

The first case A = 1) is unfavorable, and implies that com-
pared to a full dens@ of size MJ x NJ (for which the

By Lemma 2.1, each the effectiveness of the measurements by a factdi, diis is

y;(i) is a subgaussian random variable with Gaussian star? be expected since only/ measurements will be nonzero.

dardr(y; (7)) < 7(é)|lx;||2. By Lemma 2.

P20) > 1) < 2exp (— !

t
< 2exp (—

272y, (

2 we havét > 0,

i)))
|»”Uj|§)'

272(¢)|

We apply Theorem 2.1 for the random variabgl@(;z‘), i, g,

with a = 2 anda; ' (i) = 272(¢)[|2;(|3 = 35|2; 13, to com-

pute the concentration result fy||2. Note thatozj_l(i) is
constant for a fixedi. Hence, ford > max; ; a;l(i) =

% max; [|;]|3 andb > G’Zj,i a;Q(i) =

P(|llylls = lzl3| > ell[13) <

_Ellzll; 4b
2op{="m s 0Se<app o
2 ex {_éllzllz} > _4b
Pl7%8a™ ) €= TR}
Note that|z||2 = ||\ and ||z||3 = ||A||?. Substituting

d = 3¢ max; [|lz;]|5 = 3%([A[|lec andb =

% |A||3 into (5) completes the proof.

As we will be frequently concerned with application
wheree is small, let us consider the first of the cases given i

and note that for any € R",

IALE

(4). We defineA(z) = DY

2
57 225 sz,

2
5225 llgllz =

O
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Fig. 1. (a) Signal with uniform energy acrosé = 16 blocks.
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The second case\(= J) is favorable as—remarkably—the
concentration exponent scales at the same rate as for a full
densed of size M J x NJ. Incidentally, for the second case
in (4), itis worth noting that < % < J, with the extreme
values attained in the same two cases mentioned above. So,
in both cases the critical scaling of the exponent is between
M - f(e) andM J - f(e) wheref(e) is some function oé.

Two final comments about Theorem 3.1 are in order. First,
the bounds in (4) are most favorable for strictly subgaussia
random variables, for which = 1. Second, regarding the

demarcation between the two cases in (4), one can show that
2

2T < - <1 ForJ > 2, the left hand term

obeys@ > \% implying that the upper case is guaran-

H 16¢
teed to include at least< ¢ < ok

4. EXPERIMENTS

Let us illustrate the concentration phenomena suggested in
Theorem 3.1 by considering two specific signals. The plots
we show are typical of our experiments with other signals.

To begin, we randomly construct a signal of lengtt24
having uniform energy over each @f= 16 blocks. The sig-
nal x is plotted in Figure 1(a) and the uniform energy distri-

rpution is shown in the plot ok(z) in Figure 1(b). Fixing this

signal, we first generate a series of randbmatrices having
size64 x 1024. Each matrix is dense: the entries are chosen
as i.i.d. zero-mean Gaussian random variables with vagianc
1/64. Over the course of 10000 randomly generabedve
plot in Figure 2(a) a histogram @z ||2/||z||2. (Ideally, we
desire this quantity to be sharply concentrated araund

Using the same fixed signal, we now consider block
diagonal matrice® of the form (3), where each of the= 16
blocks on the main diagonal has sixé x N = 4 x 64 and
is populated with i.i.d. zero-mean Gaussian random vargabl
with variancel /4. The resultingb matrices have siz&/ J x
NJ = 64 x 1024, and because our test signal heg) =
J, Theorem 3.1 implies that concentration exponent scales at
the same rate as for a full dendeof size64 x 1024. We
plot in Figure 2(b) a histogram df®x||2/||x||2. Despite the
dramatically different structure of the sensing matridés,
concentration of measure behavior for this signal is vijua
identical to the case of fully dense matrices. For each type o
matrix, we plot in Figure 3 as a function efthe percent of

(b) \(x) for signal 1. (c) Signal with nonuniform energy across trials forwhich(1—¢) < ||®xz|2/||x]|2 < (1+¢). The curves

J = 16 blocks. (d)\(x) for signal 2.



Sig. 1, full® Sig. 1, block @ Sig. 2, full® Sig. 2, block ® Sig. 2, extended block ®
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Fig. 2. Histogram of|®x||2/||z||2 for fixedz across 10000 randomly generated matrizega) Uniform energy signal, fully dengd x 1024
®. (b) Uniform energy signal, block diagoréd x 1024 ®. (c) Nonuniform energy signal, fully dengé x 1024 ®. (d) Nonuniform energy
signal, block diagonai4 x 1024 ®. (e) Nonuniform energy signal, block diagonal x 1024 .
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Fig. 3. The percent of trials for whichl — ¢) < ||®x]]2/||z|2 <

(1 + €). Note that all curves overlap except for the nonuniform en-

ergy signal with block diagond.

for the two types of matrices are indistinguishable.

uniform energy signal with thé4 x 1024 dense Gaussian
® matrix. This suggests that the factd(z) is playing an
important and precise role in dictating the concentratibn o
measure phenomena for block diagonal matrices.

5. CONCLUSION

We have derived a concentration of measure bound for block
diagonal matrices composed of i.i.d. subgaussian random
variables. Our main result, Theorem 3.1, shows that the
concentration exponent may scale as that for a fully dense
matrix. We have also identified the role that the signal eperg
distribution (i.e.,A(x)) plays in this concentration exponent.
Using this bound to prove results such as the JL lemma
or the RIP will require applying Theorem 3.1 to differences
between signals in a s€ or to differences between sparse
signals. Depending on the application, these difference ve
tors can be expected to take either large or small values of
A(x). Understanding the role of signal energy distribution

Now, we consider instead a signal which has nonunifornfor these settings will be critical for successful applicas,

energy distribution. The signalis plotted in Figure 1(c) and

A(z) is plotted in Figure 1(d). Fixing this signal, we plot in

Figure 2(c) a histogram of®z||2/||z||2 where the sensing
matrices® are of size64 x 1024 and are fully dense. From

this histogram and the plot in Figure 3 we see that the concen-

tration of measure behavior for this signal is virtuallyrdieal
to the case of the signal with uniform energy.

Next, using this same signal with nonuniform energy,
we plot in Figure 2(d) a histogram ¢fbx||2/||z||2 where the
sensing matrice® are of sizeM .J x N.J and have block di-
agonal structure withy = 16, M = 4, andN = 64. In this
case, because our signal igs:) = 5.335, Theorem 3.1 sug-
gests that the effectiveness of our matrix will be dimingshe

Based on the histogram and on Figure 3, we observe that the

concentration of| ®x||2/||x||2 is decidedly less sharp.
Finally, using this same signa) we consider constructing

block diagonal matrices that contain extra rows to compensa
for the fact that\(z) < J. In particular, we consider matrices

and this remains a topic of ongoing research.
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