THE RESTRICTED ISOMETRY PROPERTY FOR ECHO STATE NETWORKS WITH
APPLICATIONS TO SEQUENCE MEMORY CAPACITY

Han Lun Yap, Adam S. Charles, and Christopher J. Rozell

ABSTRACT

The ability of networked systems (including artificial or bi-
ological neuronal networks) to perform complex data pro-
cessing tasks relies in part on their ability to encode signals
from the recent past in the current network state. Here we
use Compressed Sensing tools to study the ability of a par-
ticular network architecture (Echo State Networks) to stably
store long input sequences. In particular, we show that such
networks satisfy the Restricted Isometry Property when the
input sequences are compressible in certain bases and when
the number of nodes scale linearly with the sparsity of the in-
put sequence and logarithmically with its dimension. Thus,
the memory capacity of these networks depends on the in-
put sequence statistics, and can (sometimes greatly) exceed
the number of nodes in the network. Furthermore, input se-
quences can be robustly recovered from the instantaneous net-
work state using a tractable optimization program (also imple-
mentable in a network architecture).

Index Terms— Compressed Sensing, Echo State Networks,
Sequence Memory

1. INTRODUCTION

The ability of networked systems (including networks of ar-
tificial or biological neurons) to perform complex data pro-
cessing tasks relies in part on their ability to encode signals
from the recent past in the current network state. For example,
due to the long-scale temporal dependencies present in many
interesting types of time-series data, using a network to pre-
dict future values of a time-series relies in part on how well
the current network state preserves information about the se-
quence of inputs from the (sometimes distant) past [1]. Due to
these reasons, recent research has investigated the Short Term
Memory (STM) capacity of neural network models [2-5]. In
contrast with early work on memory models in neural net-
works that relied on the notion of attractors of dynamical
systems [6], STM is related to the preservation of input se-
quences in the nodes of the network while the input is stream-
ing into the network.

Prior work related to STM imposes independent and iden-
tically distributed (i.i.d.) Gaussian statistics on the input se-
quence [2,3]. Results with such a signal model have shown
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rather unsatisfactorily that the theoretical STM capacity is
capped by the number of network neurons (i.e., the num-
ber of time samples of input history that can be recovered
is equal to the number of nodes in the network). More recent
work on STM imposes a sparsity structure on the input se-
quences. Such a structure is not uncommon for natural images
and other signals [7]. With such a signal model, the authors
in [5] used a statistical mechanics calculation on an annealed
approximation of the network dynamics to demonstrate the
potential for STM capacity to exceed the number of neurons.

Sparsity has been exploited extensively in the signal pro-
cessing community, as demonstrated by the rapidly expand-
ing literature on Compressed Sensing (CS) [8]. CS studies
the conditions and algorithms for recovering a compressible
signal from an underdetermined system of linear equations.
The now canonical result in CS says that if a measurement
system satisfies the Restricted Isometry Property (RIP), then
a compressible signal can be robustly recovered from its mea-
surements via /1 -minimization, even if the length of the signal
greatly exceeds the number of measurements. Geometrically,
the RIP says that any sparse signal is uniquely and stably rep-
resented in the measurement space.

In this paper, we apply CS tools to study STM capac-
ity in a particular class of neural networks called Echo State
Networks (ESNs). Specifically, we show that such networks
satisfy the RIP when the input sequences are compressible
in certain bases and when the number of nodes scales lin-
early with the sparsity of the input sequence and logarithmi-
cally with its dimension. This implies that, not only are input
sequences uniquely and stably determined from the network
nodes, they can be recovered by using a tractable optimization
program (that can also be implemented in a network architec-
ture) [9]. As a direct consequence, the STM capacity of such
networks can indeed greatly exceed the number of nodes in
the network.

2. ECHO STATE NETWORKS AND SHORT TERM
MEMORY

An ESN is a recurrent neural network whose set of M nodes
are randomly connected without any prior training [1, 10].
The network state [n] € R evolves with the input s[n] € R
at time n as

xz[n] = f (Wan — 1] + zs[n]), (1



Fig. 1. A pictorial description of the ESN showing the input at time
N, s[N], being fed by the feed-forward vector z into the reservoir
of nodes [ N| with connectivity pattern W.

where W € RM*XM g the network connectivity pattern and
z € RM is the input feed-forward vector. The function f :
RM — RM is called the activation function and is usually
taken to be a sigmoid function applied component-wise. Fig-
ure 1 shows a pictorial representation of an ESN. ESNs have
drawn considerable interests since their introduction due to
performance in dynamical systems modeling [10], time-series
prediction tasks [1], and of course its general structural simi-
larity to biological brains [2].

In [2,3], the authors used a linearized version of the ESN,
together with a Gaussian statistics on the input sequences, to
show that the theoretical recoverable STM length is capped at
the number of neurons in the network. In a slightly different
direction, the authors in [4] removed the Gaussian model on
the inputs and used instead Fisher information to quantify the
output SNR of the input sequences as a proxy to the mem-
ory capacity of an ESN. Our work is more closely related to
the work done by the authors in [5] which exploits a sparsity
structure (in the canonical basis) of the input stimuli and stud-
ies the STM capacity of an annealed system. Here, we study
the exact formulation of the ESN and expand the class of in-
put sequences to include sequences that are compressible in
any arbitrary basis.

3. THE RESTRICTED ISOMETRY PROPERTY

Signal processing research has shown that many useful sig-
nals, including many natural stimuli [7], are inherently com-
pressible in some basis ¥ € CV*¥ (i.e., the energy of the
signal is concentrated in very few of its coefficients) [11]. CS
is the theoretical and algorithmic study of the recoverability of
compressible signals s from under-determined systems of lin-
ear equations, which can be written as * = As. In particular,
it has been shown that if the measurement matrix A satisfies
the RIP of order K and conditioning § (RIP-(K,9) [12], i.e.
for all K sparse signals

(1= 3)[Isll3 < || Asll5 < (1 +3)Is]l5

holds, then solving a constrained ¢; optimization recovers any
K -sparse input signal s. In fact, the RIP ensures recovery of
all K-sparse signals by the same measurement matrix A, and
guarantees robust recovery in the presence of noise.

Theorem 3.1. Assume a matrix A satisfies RIP-(2K,0) with
§ < 0.4627. Let s € CVN be any vector and suppose we
acquire the noisy measurements x = As + € with |||, < n.
Let 3 be the unique solution of:

min ||s||, subjectto ||As — x|, <. )

Then
HS_SKH1

/K b
where sy is the best K-term approximation of s, and «,
are some constants that depend only on 6.

s =3[l <an+p 3)

Thus, for an input vector s and measurement operator A
satisfying the RIP, solving the ¢;-minimization program (2)
guarantees an output s whose distance from s is bounded both
by the measurement noise level and by the distance from s to
its best K -term approximation.

The power of the RIP comes from the fact that when-
ever a measurement matrix A satisfies the RIP of order 2K,
distances between the images of any 2 K -sparse signals are
maintained in the measurement space, i.e. ||As; — Ass||, =~
||s1 — s2||,. This distance-preservation guarantee, or stable
embedding, allows different sparse input signals to be distin-
guishable by the ¢;-minimization recovery program. In fact,
this stable embedding of sparse signals allows many signal-
processing algorithms (e.g., signal detection and classifica-
tion) to work directly in the measurement space instead of
necessitating a prior recovery step [13].

Many random matrix constructions satisfy the RIP with
high probability. For example, when A is an M x [N matrix
whose rows are chosen uniformly at random from a DFT ma-
trix, it is known that A satisfies RIP-(X,§) with high probabil-
ity when M > CK log4(N) [12]. Notice that when K < N,
the number of measurements required M will be much less
than N. In the ESN setting, such a result will imply that the
number of nodes M can be much less than the recoverable
input sequences’ length N.

4. RIP FOR ECHO STATE NETWORKS

In this section, we show that ESNs, when written as an equiv-
alent measurement matrix on input sequences, can satisfy the
RIP. We restrict ourselves to a class of ESN proposed in [2, 3]
whereby the activation function f in (1) is identity:

x[n] = Waln — 1] + zs[n]. 4)

Following [5] and iterating (4), we see that the network state
at time N can be written as

z[N] = 2s[N]+Wzs[N —1]+ -+ WV lz4[1]
s[N]
- [Z |- WN_lZ] : =: As.
s[1]



Thus, we have shown that the network connectivity and the
feed-forward vector can be used to create an effective mea-
surement matrix A € RM*N on the input sequence s com-
prising of the past N time steps.

To advance the analysis of A, we can use the eigenvalue
decomposition of the connectivity matrix W = UDU ! to
rewrite A as

A=U|2|Dz|D*%|--- | D3] 5)
where Z = U ~!z. This setup can further be reorganized as
A=UZ[d|d|d*|---|d " =UZF (6)

where d = diag (D) is the column vector consisting of the
eigenvalues of W, Z = diag(Z) and the exponentiation of
the vector d is defined as the element-wise exponentiation.
Additionally, we will analyze the properties of A under some
generally-accepted assumptions on the network. Deviations
from these assumptions will be studied in a future work. First,
we assume, as in [3,5], that the connectivity matrix W is a
real, random orthonormal matrix (i.e., WW7T = WTW =
I). This implies that U is also orthonormal and when M
is large enough, the eigenvalues are distributed uniformly on
the unit complex circle.! As such, the matrix F becomes a
subsampled discrete-time Fourier transform (DTFT) matrix.
Second, we assume that we have control over the choice of
the feed-forward vector z. By letting z := U1, where 1 :=

[1,---,1]7, Z becomes an identity matrix.
Under these assumptions, we see that A = U F'. Because
|UFs||3 = || Fs||3 for any s, we can draw on previous RIP

results on subsampled DTFT matrices [12] to arrive at the
following theorem.

Theorem 4.1. Let W be a random orthogonal M x M matrix
with eigenvalues distributed uniformly on the complex unit
circle as described and z := U1 be the length-M feedfor-
ward vector. Then with probability at least 1 — O(N~1), for
any input sequence s € RY that is compressible in a basis
W, AW satisfies RIP-(2K, §) whenever

M > CK§ 212 () log*(N).

The quantity 1 (¥) is the incoherence of the basis ¥ with the
subsampled DTFT F defined as

N-1
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w(¥):= max  sup

n=1,-,N ¢ec[0,27]
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where W, ,, is the (n', n)-th entry of the matrix ®.

A few remarks are in order. First, we can use Theorem 3.1
to ensure recoverability of input sequences from the node val-
ues of the network. In particular, given noisy readings of the

ISince the connectivity matrix is real, its eigenvalues and eigenvectors
come in complex conjugate pairs.

node values * = As + e with error vector ||e|2 < 7, solving
the £1-optimization (2) recovers any input sequence s com-
pressible in the basis W up to an /5 error:

13— sll, < an + B ®"Ts — (¥7s)k |1/ VE,

where o and /3 are constants, and (¥# s)  is the best K terms
approximation to W s. If s is K -sparse in ¥ and there is no
noise (n = 0), the above theorem says that we can perfectly
recover any sparse input sequences s from & whenever the
number of nodes M is proportional to the sparsity /K and the
coherence ;2 (¥) (and poly-logarithmic in N).

Second, this recoverability guarantee allows us to look at
the STM capacity of such networks. Suppose that the spar-
sity of input sequences to the ESN scales linearly with the
sequence length N, i.e., K = [pN] where p € (0, 1) is the
sparsity density, and suppose that the node values are not cor-
rupted by noise. Then, the STM capacity will be the largest N
such that M > CpNd—2p? (®)log*(N). Thus, if the spar-
sity density is low (i.e., p < 1) and the sparsity basis ¥ has
small incoherence (i.e., u?(¥) ~ 1), then the STM capacity
of the network can greatly exceed the number of nodes M.

Third, the RIP of A means that input sequences of length-
N are stably embedded in the state of the network nodes.
Thus, not only are different input sequences of length-/V dis-
tinguishable, their distances are also preserved in the node
space (i.e., sequences that are similar will have similar node
values while sequences that are very different will have very
different node values). The ESN architecture has often been
characterized through the Echo State Property (ESP). Con-
cisely, the ESP ensures that under certain compactness con-
ditions every network state is uniquely determined by some
left-infinite input sequence [10], i.e., &[n] is uniquely deter-
mined by - -, s[n — 2], s[n — 1], s[n]. In essence, the ESP
implies that there is a one-to-one correspondence between the
input time series and the current network state, further imply-
ing that a function can predict future inputs from the current
state as well as if it had the entire previous input sequence.
Since distances between sparse inputs are preserved in the
node space, the RIP is a stronger guarantee of information
preservation than the ESP (which may not preserve distances
between inputs). This will provide some measure of stability
to any algorithms operating on the network state (e.g. time
series prediction).

5. SIMULATIONS OF STM CAPACITY

To show the validity of our theory on STM capacity, we cre-
ate a plot demonstrating the total error in recovering an input
sequence of length IV with sparsity density p from M nodes
in Figure 2. We use a plotting style similar to the phase tran-
sition diagrams of [14] where the relative mean-squared error
(rtMSE) of the reconstruction is shown for each pair of vari-
ables (in this case N and M). The wedge between the dashed
line (M = N) and the solid line (recovery error = 0.1%) in
each plot shows that the STM capacity can easily exceed the
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Fig. 2. rMSE for input sequences of length N from the M number
of neurons where the input sequences are p/N-sparse in a basis ¥
with p = 0.05. The wedge between the dashed line (M = ) and the
solid line (recovery error = 0.1%) in each plot shows where the STM
capacity exceeds the number of network nodes. This wedge is large
for sequences sparse in the canonical, Symlets and Daubechies-10
wavelet basis (up to 4 level decompositions) as these bases are inco-
herent with the subsampled DFT. For the discrete cosine transform
(DCT) basis which is coherent with the subsampled DFT, recovery
above N = M suffers significantly.

number of nodes in the system for input sequences that are
pN-sparse in different bases.

6. CONCLUSIONS

In this paper, we quantified the STM capacity of an ESN by
showing that, when written as a measurement matrix on input
sequences, the network satisfies the RIP whenever the number
of nodes scales linearly with the sparsity of the input sequence
and logarithmically with the sequence dimension (with a fac-
tor depending on the input sparsity basis). These results lead
us to conclude both that 1) the STM capacity of these net-
worked architectures can be much larger than the size of the
network (a barrier to previous STM analysis), and 2) the tools
of CS can be powerfully applied beyond signal recovery to
the study of some properties in dynamical systems.

These preliminary results lead to many interesting open
questions. In particular, the current derivation makes several
simplifying assumptions on the network structure. First, we
imposed an orthogonal structure on the network connectivity
matrix W and second, we chose a particular feed-forward
vector z := U1. In practice, ESNs, including networks
that model neural systems, can have network structures that
are different from those considered in this paper. For exam-
ple, networks can have “small world” connectivity and the
weights of the feed-forward vector can be randomly chosen.
Effects of deviating from these assumptions on the RIP will
be studied in a forthcoming paper. Additionally, we only con-
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sidered ESN networks fed with finite length signals. In ongo-
ing work, we extend results to networks subjected to infinite
length inputs.
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