
IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 1

Evaluating the generalization of the Hearing

Aid Speech Quality Index (HASQI)
Abigail A. Kressner*, Student Member, IEEE, David V. Anderson, Senior Member, IEEE,

and Christopher J. Rozell, Member, IEEE

EDIC: Auditory Modeling and Hearing Aids

Abstract

Many developers of audio signal processing strategies rely on objective measures of quality for

initial evaluations of algorithms. As such, objective measures should be robust, and they should be able

to predict quality accurately regardless of the dataset or testing conditions. Kates and Arehart have

developed the Hearing Aid Speech Quality Index (HASQI) to predict the effects of noise, nonlinear

distortion, and linear filtering on speech quality for both normal-hearing and hearing-impaired listeners,

and they report very high performance with their training and testing datasets [Kates, J. and Arehart,

K., Audio Eng. Soc., 58(5), 363-381 (2010)]. In order to investigate the generalizability of HASQI, we

test its ability to predict normal-hearing listeners’ subjective quality ratings of a dataset on which it was

not trained. This dataset is designed specifically to contain a wide range of distortions introduced by

real-world noises which have been processed by some of the most common noise suppression algorithms

in hearing aids. We show that HASQI achieves prediction performance comparable to the Perceptual

Evaluation of Speech Quality (PESQ), the standard for objective measures of quality, as well as some of

the other measures in the literature. Furthermore, we identify areas of weakness and show that training

can improve quantitative prediction.

I. INTRODUCTION

The most accepted evaluations of speech quality are performed through subjective listener tests where

human listeners assign a score or ranking to samples of speech according to their perceived quality.
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However, these listener tests are often time-consuming and expensive. Given the large community of

researchers interested in measuring quality who do not have access to listener testing on a regular

basis (especially hearing-impaired listener testing), it is no surprise that significant work has gone into

developing objective measures of speech quality.

Among many desirable qualities for such objective measures (e.g., computation efficiency), the most

critical is robustness; these measures should accurately predict quality across many datasets and testing

conditions. For developers interested in judging quality in the context of hearing aids, Kates and Arehart’s

Hearing Aid Speech Quality Index (HASQI) has great potential since it was developed specifically to

capture quality when speech is subjected to a wide variety of distortions commonly found in hearing

aids [1]. While Kates and Arehart report very high prediction performance for their measure, its robustness

properties are unknown because it has only been evaluated using test data from the same session as the

original training data used in the model development.

The main objective of this paper is to investigate HASQI’s robustness as a quality measure by

performing an extensive evaluation of its performance predicting subjective quality scores on a large novel

(i.e., not used in the model design) speech corpus under a variety of distortion conditions. Specifically,

the dataset we use is designed to contain many of the distortions introduced by some of the most

popular hearing aid noise suppression algorithms. In the first part of our evaluation, we look in detail

at the individual components of HASQI (before and after re-training) to determine the robustness of the

individual model components. While the goal of this paper is not to design a new objective measure, this

exercise in identifying where HASQI performs well and where it breaks down can guide future model

development to improve robustness. In the second part of our evaluation, we compare HASQI’s predictive

performance directly with several other measures from literature. Since evaluations of objective measures

are context-sensitive (e.g., factors such as which dataset is used, how listener tests are conducted, and

which statistical methods are employed can drastically alter how performance is reported), this comparison

is of value because it provides a frame of reference for judging HASQI’s performance. In our evaluations

we consider HASQI as it was originally specified as well as a re-trained version of HASQI with the

same structure (highlighting the differences in robustness due to the model structure versus the specific

coefficient values from training).

To summarize our main result, we find that when compared with other objective measures, HASQI and

its re-trained version perform comparably to the best performing measures, both in terms of correlation

and prediction error. When looking at the performance of HASQI in detail, we see that the original

HASQI has slightly decreased correlation with quality scores for this dataset from that originally reported
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and that re-training the coefficients does not significantly improve the correlation. While re-training

can show significant prediction improvements on subjective scores that have been rescaled according

to the recommendations for HASQI, this improvement does not carry over to standard Mean Opinion

Scores (MOS). Interestingly, re-training reveals that one of the two main components of the model do

not contribute to the prediction at all (and therefore should not be included at least with this dataset),

indicating a possible area for significant model improvement.

II. OBJECTIVE MEASURES

Objective quality measures have a long history in the speech and audio community, with a wide

variety of measures reported in the literature. Some of the earliest objective quality measures quantified

the difference between a degraded signal and its corresponding clean version using relatively simple

calculations based on signal-to-noise ratio (SNR) [2], [3], [4], [5], [6]. These basic measures have non-

trivial predictive abilities despite their simplicity; however, much of the recent development has moved

toward more computationally complex modeling approaches. Some examples include loudness model

based measures [7], [8], [9], models based on estimates of firing rates or excitation patterns [10], [11],

coherence based predictors [12], [13], [14], normalized cross-correlation based measures [15], [16], and

psychoacoustic model based approaches [17], [18], [19], [20], [21], [22], [23], [24], [25]. Furthermore,

some of the most well-known objective measures use multiple components (often adaptations from the

previously cited measures) to capture various aspects of signal quality to collectively improve overall

prediction (e.g., the Perceptual Evaluation of Audio Quality (PEAQ) [26], [27] and the Perceptual

Evaluation of Speech Quality (PESQ) [28], [29], [30], [31], [32]).

In this work we specifically focus on the Hearing Aid Speech Quality Index (HASQI) [1], which is

one of many objective measures recently developed specifically for hearing-impaired listeners and for

hearing aid applications (e.g., [33], [34], [35], [36]). In this section, we will give a detailed description

of HASQI (Section II-A) as well as a brief introduction to the specific objective measures we use for

performance comparison (Section II-B).

A. Hearing Aid Speech Quality Index (HASQI)

HASQI is an objective measure of quality designed and validated to predict subjective quality for

distorted speech [1]. It is the product of two independent components. The first component, called Qnonlin,

captures noise and nonlinear distortion. The second component, called Qlin, captures linear filtering and
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Fig. 1. Schematic diagram of the auditory model for the computation of Qnonlin. The dashed boxes indicate those components

which are configured for different types of hearing.

spectral changes. Both components quantify specific types of differences in cochlear model representations

of a clean reference signal, x, and the test signal, y.

1) Nonlinear component: Conceptually, the nonlinear component measures how well the smoothed

spectral representation of the test signal matches the reference signal. Thought of in another way, this

component measures the degree to which the processing alters the dynamics of the short-time spectrum of

the test signal over time. Specifically, the HASQI model computes time-frequency cochlear representations

of both x and y using a basic cochlear model [1] (schematic shown in Figure 1). The main components

of the model are a middle ear filter, compression, and an inner hair cell approximation. In the figure,

the dashed boxes indicate the components which are configured according to the health of the inner and

outer hair cells. In this way, the model can represent a large number of hearing configurations, including

normal hearing and various types of sensory hearing losses.

Initially, HASQI filters x and y to reproduce the response properties of the middle ear. Each resulting

signal is filtered by two parallel filter banks made up of 32 gammatone filters with center frequencies

spanning the range from 150 Hz to 8 kHz. The first filter bank (analysis) forms the main signal pathway

while the second filter bank (control) controls the compression. The bandwidths of the analysis filters are

designed to be inversely proportional to the condition of the outer hair cells—the more significant the

hearing loss being modeled, the wider the filter bandwidths. Conversely, the bandwidths of the control

filters are constant and are set to the analysis filter bandwidths at maximum hearing loss.

The outputs of each filter are the baseband signal envelopes in the respective frequency band. HASQI

normalizes these outputs to equalize the average energies between x and y in each frequency band

within both pathways. HASQI then defines a time and frequency dependent compressive gain in the
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Fig. 2. Schematic diagram for Qnonlin. Dashed boxes indicate components that are configured for different types of hearing.

control pathway based on the compression rule (i.e., the rule defining the input-output sound pressure

levels based on the outer hair cell viability). The gains are delayed briefly in time to approximate the short

delay in cochlear compression and applied pointwise to the envelopes in the analysis pathway. Finally,

HASQI incorporates inner hair cell damage via signal attenuation and converts the compressed envelopes

to decibels above threshold (approximating the conversion from signal intensity to neural firing rates).

At the output of the cochlear model, HASQI has time-frequency representations for both x and y.

By abstracting the cochlear model as a black box, we can view the entire process of computing the

nonlinear component in the schematic diagram in Figure 2 (the block labeled “model” is the black box).

HASQI temporally windows the time-frequency representations of x and y from the model output with

an 8-ms raised-cosine window and 50% overlap so that each resulting time frame contains a short-time

log-magnitude spectra on an auditory frequency scale. HASQI then uses half-cosine basis functions to

transform the short-time log-magnitude spectra into smoothed representations of spectral ripple through

time and then computes the cross-correlation between each spectral ripple of x and y. Finally, HASQI

computes the average of the cross-correlations (Kates and Arehart call this value the “average cepstral

correlation” since the smoothing transformation resembles cepstrum computation) and maps the average

to Qnonlin using a second-order regression fit defined separately for the normal and impaired models.

2) Linear component: Conceptually, the linear component captures how large the differences are

between the long-term average spectra of the test signal and the reference signal. Specifically, HASQI’s

linear component begins with a cochlear model similar to the one described above but with a few

differences (schematic diagram shown in Figure 3). Most importantly, HASQI averages the baseband

envelopes at the output of the control and analysis filter banks across all time so that it obtains average

frequency responses for each pathway. HASQI then uses the average frequency response in the control

path to compute a compressive gain for each frequency band. Since HASQI has averaged over time in
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Fig. 3. The auditory model used in Qlin. Dashed boxes indicate components that are configured for different types of hearing.

this case, there is no time delay. Furthermore, since the differences in the long-term averages are actually

of interest, HASQI does not equalize x and y as it does for the nonlinear component.

At the output of the cochlear model for the linear component, HASQI has average firing rates across

frequency for both x and y. By abstracting the cochlear model as a black box, we can view the entire

process of computing the linear component in the same way as for the nonlinear component (Figure 4).

After the cochlear model, HASQI converts the signal amplitude from a logarithmic scale to a linear

scale1 and normalizes the average responses of x and y so that each response has a root-mean-square

(RMS) value of one. Because of these two adjustments, HASQI can quantify the effect of the spectral

differences without overemphasizing frequency regions where the signal has been attenuated and without

confounding signal amplitude, respectively. Next, HASQI computes the standard deviation of (x− y),

subtracts the estimated spectral slopes of y from the spectral slopes of x, and computes the standard

deviation of the result. Finally, HASQI maps the two standard deviations to Qlin using a regression fit

which is defined separately for the normal and impaired models.

B. Benchmarking objective measures

As mentioned earlier, we compare the performance of HASQI to a collection of existing quality

measures to provide context for our reported performance results. Hu and Loizou [3] previously evaluated

a collection of objective quality measures, including segmental segSNR, fwsegSNR, weighted-slope

spectral distance (WSS), Perceptual Evaluation of Speech Quality (PESQ), log-likelihood ratio (LLR),

1We note for completeness that this conversion was not performed in preliminary versions of this work reported in [37].
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Fig. 4. Schematic diagram for Qlin. Dashed boxes indicate components that are configured for different types of hearing.

Itakura-Saito distance measure (IS), and a cepstral distance measure (CEP). We use this same set of

objective measures as benchmarks for evaluating the performance of HASQI.

segSNR is a basic measure that predicts quality by averaging the SNR across each time frame.

fwsegSNR is slightly more complex, but maintains a similar focus on SNR. To compute fwsegSNR,

we normalize the spectra of the reference signal and test signal, and then calculate, for each segment,

the weighted-average of the SNR in a number of critical bands. The weights are computed on the fly

and are based on the magnitude spectrum of the reference signal. Finally, we compute the mean of the

frequency-weighted SNRs across each time frame. WSS is similar to fwsegSNR in that it is an average

of a set of weighted averages. In this case though, we replace SNR with the squared difference between

the spectral slope of the reference signal and test signal.

We consider three objective measures which are based on linear predictive coding (LPC): LLR, IS,

and CEP. LPC is a tool for representing the spectral envelope of a signal in a compressed form using

the information of a linear predictive model of speech. The LLR distance at a given frame is defined as

dLLR = log
ayRxaT

y

axRxaT
x

,

where ax is the LPC vector of the clean signal, ay is the LPC vector of the test signal, and Rx is the

autocorrelation matrix of x. We compute the LLR measure by finding the mean of the LLR frame-specific

distances. We compute the IS measure by calculating the mean of the frame-specific distance:

dIS =
σ2

x

σ2
y

(
ayRxaT

y

axRxaT
x

)
+ log

(
σ2

x

σ2
y

)
− 1,

where σ2
x and σ2

y are the LPC gains of x and y, respectively. Lastly, CEP predicts quality from the

cepstral coefficient vectors. Specifically, we compute the cepstral coefficient vectors recursively from the

LPC vectors for the reference signal and the test signal. Then, we compute the MSE between the cepstral

coefficients of the two signals at each frame and calculate the mean across all frames [3].
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Among all of the benchmarking objective measures, PESQ is the most complex to compute. The basic

components of PESQ include time alignment, modeling of loudness, disturbance processing, cognitive

modeling, aggregation of the disturbance in frequency and time, and finally, mapping to the predicted

subjective score. See [29] for more details.

III. METHODS

Hu and Loizou developed a set of speech samples (the NOIZEUS corpus2) specifically to facilitate

comparison of speech enhancement algorithms among research groups [38]. The speech samples contain

the types of distortions that are introduced by noise suppression algorithms used in hearing aids [3]. We

evaluate HASQI using this set of speech files and the corresponding subjective scores (NH listeners)

from Hu and Loizou [38], [3].

A. Speech corpus and subjective evaluations

We use noisy sentences from NOIZEUS that include babble, car, street, and train noise with signal-

to-noise ratios (SNRs) of both 5 dB and 10 dB. In addition, we include 16 of the sentences from the

IEEE 1969 Subcommittee [39] (sp01-04, sp06-09, sp11-14, sp16-19). Each noisy sentence was processed

with 13 different noise suppression algorithms, including spectral subtractive, subspace, statistical-model-

based, and Wiener-filtering algorithms [3], [40], [38]. The spectral subtractive class of algorithms includes

multi-band spectral subtraction, as well as spectral subtraction using reduced-delay convolution and

adaptive averaging. The subspace class of algorithms includes the generalized subspace approach and the

perceptually-based subspace approach. The statistical-model-based class of algorithms includes those that

use the minimum mean square error (MMSE), the log-MMSE, and the log-MMSE under signal presence

uncertainty. Finally, the Wiener-filtering class of algorithms includes the a priori SNR estimation method,

the audible-noise suppression method, and a wavelet-thresholding method.

With this wide range of noise suppression algorithms, the dataset contains a diverse selection of the

distortions which are likely to be introduced during speech enhancement in hearing aids. To summarize,

the final dataset contains 1792 files made up of 16 sentences, four noise types, two SNRs, and 14

algorithms (13 noise suppression algorithms plus an unprocessed control case). We divide the dataset

into a training set and a testing set by randomly placing each of the 16 sentence types into one set or

the other. We use the training set to train HASQI in the first experiment and use the testing set for the

2Available online: http://www.utdallas.edu/∼loizou/speech/noizeus/
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performance analysis.3 Note also that for all of the objective measures but HASQI and tHASQI, we

compute the scores at the speech files’ native sampling frequency of 8kHz. For HASQI and tHASQI, we

upsample the speech files to 16kHz to accommodate the requirements of the auditory models.

Dynastat, Inc. (Austin, TX) conducted the subjective listener testing according to the ITU-T Recom-

mendation P.835. Thirty-two NH listeners were asked to focus on and rate the speech files sequentially

based on signal distortion, background intrusiveness, and overall quality in two experimental sessions

lasting 1.25 hours. We focus in this study on the overall quality rated using MOS, where a one indicates

bad, two indicates poor, three indicates fair, four indicates good, and five indicates excellent. Hu and

Loizou describe this dataset in detail [38], and compare the noise suppression algorithms based on their

respective performance.

Our subjective dataset contains scores on a fixed scale between one and five, but HASQI gives

objective scores on a relative scale between zero and one. To complicate things even more, some

of the benchmarking measures give objective scores on an unbounded scale. Given the variation of

the scales amongst all of the objective and subjective scores at which we look, we are forced to

implement transformations of the scores to more clearly compare them. For the first experiment reported

in Section IV-A, we use the standard well-known MOS without any modification to evaluate HASQI with

minimal manipulation. Then, we evaluate HASQI after we transform the scale of each objective measure

to match that of the MOS. To be clear, this transformation is a rescaling of the objective scores on a

global basis. For the second experiment reported in Section IV-B, we transform the subjective ratings as

Kates and Arehart recommend so that perfect reproduction of the reference signal yields a value of one

and the poorest quality reproduction yields a value of zero for each listener and experimental session [1].

In other words, for each listener in each experimental session, we subtract the minimum rating and then

divide by the resulting maximum. In contrast to the first experiment, this rescaling is of the subjective

scores on an individual listener basis.

B. Training

The issue of robustness has two aspects that can be investigated. The strongest notion of robustness

would be if a model generalized well “out of the box” with no additional parameter changes for a different

dataset. Slightly weaker than this but still valuable is if a model structure generalizes well with some

3For the results presented below, the training set was composed of sp03, sp06, sp07, sp08, sp09, sp13, sp17, and sp19.

Note that alternate divisions of the sentences into the training and testing set result in slightly different performance valuations.

However, the results of significance tests and conclusions remain the same.
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changes to a few parameters that are trained to match the specifics of the new dataset. To this end, we

evaluate both the original model as specified (which we will call simply HASQI) and a model that has

a few high-level parameters trained on the current dataset (which we will call tHASQI). In this section

we detail Kates and Arehart’s training methods as well as our own.

During the development of HASQI, Kates and Arehart used a dataset composed of subsets specifically

designed to contain only nonlinear or linear distortions. When they optimized the regression fits for

the nonlinear and linear components to predict the corresponding subjective scores, they used only the

subsets of data with the relevant distortion characteristics. Thus, they were able to compute the regression

coefficients for the nonlinear and linear components separately by running independent optimization

programs [1].

For the nonlinear component, Kates and Arehart use a second-order regression fit from the average

cepstral correlation (c) of the nonlinearly distorted speech to the respective subjective quality ratings to

determine the parameters [α1, α2, α3].

Qnonlin =

 α1 + α2c+ α3c
2 if c ≥ cmin

mc if c < cmin

(1)

Since Kates and Arehart’s development dataset contained only averaged cepstral coefficients in the range

between about 0.5 and 1, they assume a linear fit for average cepstral coefficients below 0.5 rather than

extrapolating from the regression [1]. Note that m is not part of the regression fit; it is simply the slope

of the line from the origin to Qnonlin at cmin.

For the linear component, Kates and Arehart perform MMSE linear regression on the standard deviation

of the spectral differences (σ1) and the standard deviation of the spectral slopes (σ2) of the linearly

distorted speech to fit the corresponding subjective responses by determining the coefficients [α4, α5, α6],

Qlin =α4 + α5σ1 + α6σ2.

Since standard deviations of zero correspond to perfect quality, they set α4 = 1 and restrict α5 and α6

to be negative. Finally, they map Qnonlin and Qlin to HASQI with

HASQI =Qnonlin ∗Qlin.

For NH listeners, the MMSE regression coefficients for Kates and Arehart’s model are α = [0.618,

−2.184, 2.566, 1,−0.400,−0.628].

In more realistic operational settings, datasets available for training would not likely be cleanly split

into subsets with exclusively linear and nonlinear distortions, and so the linear and nonlinear components
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could not be optimized independently. Indeed, this is also the case with our training dataset. We instead

implement a parameter training method using our training dataset (described above) that is as close to

the method described by Kates and Arehart as possible. Specifically, given the predictors c, σ1, and σ2,

we run one unified optimization program using the following model (note that we exclude the linear

fit portion of Qnonlin in Equation (1) because we will not be using tHASQI for extrapolation with other

datasets).

tHASQI =(β1 + β2c+ β3c
2) ∗ (β4 + β5σ1 + β6σ2) (2)

We compute c, σ1, and σ2 for all 896 speech samples in the training set, and average the predictors

across sentences to obtain averages for all combinations of noise type, SNR, and noise suppression

algorithm. In a similar manner, we average the subjective quality scores for all combinations of noise

type, SNR, and noise suppression algorithm by averaging the transformed scores across talkers, listeners,

and experimental sessions. The set of all combinations of noise type, SNR, and noise suppression

algorithm make up 112 conditions. We optimize β = [β1, β2, β3, β4, β5, β6] by minimizing the MSE

between tHASQI (Equation 2) and the subjective quality scores for the 112 conditions. In the results of

Section IV-A we will briefly discuss the effect of the constraints on these coefficients.

C. Testing

For each objective measure (HASQI, tHASQI, and the benchmarking measures), we predict quality

for all 896 speech samples in the testing test. Similar to the case for training, we average the predicted

scores across sentences to obtain an average score for all combinations of noise type, SNR, and noise

suppression algorithm. We then average the subjective quality scores for all combinations of noise type,

SNR, and noise suppression algorithm by averaging the MOS across talkers, listeners, and experimental

sessions. The set of all combinations of noise type, SNR, and noise suppression algorithm make up 112

conditions.

We use this set of 112 averaged objective and subjective score pairs to evaluate performance. We

compute all benchmarking objective measures except PESQ by segmenting the sentences into 30-ms

frames using Hamming windows with 75% overlap between adjacent frames. PESQ is segmented and

windowed at each stage as specified in the ITU-T Recommendation P.862. Furthermore, we compute the

LPC-based objective measures (LLR, IS, and CEP) using tenth-order LPC analysis [3]. We refer interested

readers to Hu and Loizou [3] and Loizou [40], and the references within, for more details. Note that
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the performance evaluation using correlation for the benchmarking objective measures is essentially the

same as that previously reported by Hu and Loizou [3].

D. Performance evaluation

We use two measures to evaluate the prediction performance of each objective measure. First, Pearson’s

correlation coefficient (r) measures the linear dependence between the objective measures (o) and the

subjective quality scores (s) through the formula

r(o, s) =
∑

i(oi − ō)(si − s̄)√∑
i(oi − ō)2

√∑
i(si − s̄)2

,

where ō is the sample mean of o and s̄ is the sample mean of s. We compute 95% confidence intervals

for each correlation coefficient using Fisher’s z transformation of r and test for significant differences

using Wolfe’s test for comparing dependent correlation coefficients [41].

Second, mean squared error (MSE) quantifies the difference between the objective measure and the

true subjective scores by measuring the average of the squares of the “errors”,

MSE(o) =
1
N

N∑
i=1

(o− s)2.

IV. RESULTS

We begin with an in-depth exploration of HASQI’s performance, specifically concentrating on the

performance using transformed subjective ratings, the effect of training HASQI on the type of data used

in the testing dataset, and the relative performance of the linear and nonlinear HASQI components in

prediction. We follow this in-depth exploration with a broad comparison of HASQI to the benchmarking

objective measures using the MOS.

A. HASQI performance analysis and training

Using the testing set and the model as Kates and Arehart propose it, we compare the nonlinear and linear

components of HASQI (both separate and together) to the mean transformed subjective ratings as well as

the combined measure in Figure 5. We report a correlation of r = 0.87 for the nonlinear component and

a substantially lower r = 0.65 for the linear component. After combining the two components, HASQI

achieves a correlation of r = 0.86 for our dataset. Note that this is slightly lower than the correlation

of r = 0.942 reported for HASQI in its original evaluation [1]. Additionally, note that 309 of the 896
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Fig. 5. Average subjective quality scores (using the transformed scores) plotted as a function of the average (a) nonlinear

component, (b) linear component, and (c) combined measure for the original model (HASQI with black crosses) and the re-trained

model (tHASQI with gray circles). For each set of points, the correlation and MSE are shown.
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sentences in the testing set have average cepstral correlations less than 0.5, and therefore are mapped

with Kates and Arehart’s assumed linear fit.

Although correlation provides useful information about the behavior of the model, it does not reveal

the entire story. In particular, the most direct evaluation of a measure’s performance would be its ability to

predict the subjective scores reported by listeners. For HASQI, the nonlinear component has a prediction

MSE of 0.058, the linear component a prediction MSE of 0.266, and the combined measure a prediction

MSE of 0.065. Note that just as with the correlation calculation above, the performance of the linear

component is much worse than the performance of the nonlinear component of the model.

HASQI had generally lower performance for our dataset using the trained parameters from the original

paper, as could be expected. Furthermore, HASQI on our dataset had consistently lower performance for

the linear component of the HASQI. Therefore, it is natural to consider whether re-training the parameters

of the model would improve performance. Furthermore, by developing a HASQI trained specifically on

our dataset (tHASQI), we can identify the upper limit of performance for a model which does not change

the underlying structure of HASQI. Specifically, we set β4 = 1 and restrict β5 and β6 to be less than

zero as Kates and Arehart did, and solve the optimization described in equation (2).

The resulting MMSE regression coefficients for tHASQI are β = [0.026,−0.044, 1.494, 1.000, 0.000,

0.000]. Note that the optimal coefficients force the linear component to have no effect on the total measure

(it is exactly one for the entire range of speech samples, as shown in Figure 5), essentially saying that the

nonlinear portion of the model is capturing the effects of all stimulus distortions. When we use tHASQI

to predict the transformed subjective scores of the testing set, we obtain a correlation of r = 0.87 for

the nonlinear component, r is undefined for the linear component (the correlation is undefined since the

variance of Qlin is zero), and r = 0.87 for the combined measure. Furthermore, the nonlinear component

has a prediction MSE of 0.005, the linear component 0.356, and the combined measure 0.005. Training

does not significantly change the overall correlation, but it has reduced the MSE of the combined measure

by an order of magnitude.

If we diverge a little from the proposed model and remove the restrictions on β5 and β6 but keep

β4 = 1, a negative correlation structure emerges for the linear component so that smaller values of Qlin

correspond to better quality and larger values of Qlin correspond to poorer quality. In other words, with

the coefficient restrictions removed, the model appears to still want to capture everything in the nonlinear

component and use the linear component to correct for the overaggressive nature of Qnonlin in capturing

the linear distortions. Despite this change in Qlin, the general regression fit for Qnonlin remains the same.

As a result, including Qlin in this form of the model actually decreases the correlation and increases the
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Fig. 6. Absolute value of the correlation between objective and subjective (MOS) scores plotted with two-sided 95% confidence

intervals. Correlation coefficients significantly different from HASQI are designated (∗ indicates a p-value of 0.034, ∗∗ a p-value

of 0.009, and ∗ ∗ ∗ a p-value less than 0.001).

MSE. A similar qualitative result also emerges when we remove all restrictions on the coefficients, with

approximately the same performance of the complete measure. We choose to keep the same restrictions

as specified by Kates and Arehart to stay as close as possible to the specification of the original model

and its training method.

B. HASQI performance comparison

To compare the performance of HASQI and tHASQI with that of other objective measures, we plot the

absolute value of the correlation between the subjective MOS and the scores predicted by each objective

measure in Figure 6, along with 95% confidence intervals. Note here that in contrast to the results of

the previous section, we are now reporting the standard MOS results without the individual rescaling

proposed for HASQI (described in Section III-A). It is evident from this plot that the correlation between

HASQI and MOS is not significantly different than the correlation between PESQ and MOS. Thus, it is

encouraging that HASQI correlates with the subjective data at similar levels as state-of-the-art standards

such as PESQ. However, neither of these measures yield predictions that are significantly more correlated

with MOS than LLR or fwsegSNR, which are very simple measures comparatively.

Although correlation provides useful information about the behavior of the model, it does not reveal

the entire story. Specifically, it may not reveal the ability of the model to quantitatively predict subjective

scores, which is the main objective of these types of measures. Therefore, in the top of Figure 7 we plot

prediction MSE for each objective measure. Since PESQ was designed to predict MOS specifically, it

is no surprise that it yields the smallest MSE. In contrast, measures such as IS and WSS that were not

designed to predict quality exactly on the MOS scale have unsurprisingly high MSE.
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Fig. 7. (a) MSE between objective measures and MOS; (b) MSE between rescaled objective measures and MOS.

It is straightforward to see that one could perform a simple linear transform of the objective measures to

map them to the MOS scale, providing better quantitative predictions (and removing any trivial advantage

for PESQ due to scaling). Thus, we linearly transform each objective measure so that its minimum value

matches the minimum of the MOS and its maximum value matches the maximum of the MOS. The

bottom of Figure 7 shows the prediction MSE on this set of rescaled objective measures. We see from

this plot that HASQI (along with fwsegSNR) have similar predictive capabilities on this dataset to PESQ.

Interestingly, note that tHASQI shows some improvement over HASQI for the data, but not nearly

the order of magnitude improvement seen in the results of Section IV-A. In the previous section, we

train and test using the individually rescaled subjective scores (described in Section III-A) whereas in

this section, we test using the standard MOS. While it may be possible to improve the performance of

tHASQI by training it on the standard MOS, this type of training is not the recommended procedure in

the original model description and is outside the scope of this paper.

V. DISCUSSION

In this study, we examined the generalizability of HASQI for NH listeners. We have shown that while

HASQI does not predict quality as well as it did with data on which it was trained, it generalizes well for

NH listeners and achieves performance comparable to PESQ and other commonly used measures. Re-

training HASQI on this dataset did show some improvements in prediction MSE, but the most dramatic
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improvements did not carry over to tests on MOS data. In no case did re-training improve significantly

the correlation of HASQI scores with the subjective data. While these results regarding NH listeners are

encouraging, given the potential benefits of HASQI for addressing HI listeners, further investigation is

clearly warranted regarding the generalizability of HASQI to this listener population.

When we re-train HASQI, the optimal model which emerges actually eliminates Qlin completely and

uses only Qnonlin to make predictions about subjective quality. This result is curious, and suggests a few

possible interpretations. First, we might say that the prediction power of HASQI is entirely in Qnonlin and

that we should eliminate Qlin from the model. However, since Qlin proved useful in Kates and Arehart’s

dataset, we instead conclude either that our dataset contains only nonlinear distortions or that Qlin is not

sensitive enough to capture the linear distortions that do appear in our dataset. Either way, this result

suggests that the HASQI model should be improved so that inclusion of the linear component is beneficial

rather than detrimental to quality prediction on a wider array of datasets. Future work on HASQI should

focus on boosting Qlin’s sensitivity to linear distortions.

By training HASQI, we have identified the upper limit on how well HASQI can predict quality for

this dataset. In order to make further improvements to HASQI, changes will need to occur at the

structural level. For example, future developers should consider quantifying likeness between spectral

representations of a signal and its clean version with something more precise than average correlation

or consider using long-term frame-based analysis for measuring linear distortions rather than averaging

over the entire signal length. Additionally, future developers should consider incorporating fine temporal

features.

The auditory model used in HASQI is relatively simple and does not capture many of the fine temporal

features present in more complex models. We explored replacing the auditory model in HASQI with the

more complex, physiologically-validated computational model by Zilany and Bruce [42]. We found that

this more complex model did not improve the prediction performance and conclude that HASQI will

not benefit from a more accurate model in its current form. However, we feel further investigation with

datasets that contain wider dynamic ranges and/or subjects with hearing loss is warranted in order to

completely rule out benefits of such a model. Furthermore, if HASQI was updated to explicitly use fine

temporal features, a model like Zilany and Bruce’s [42] would likely prove beneficial.
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