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Abstract—In compressive sensing (CS), the Restricted There has been significant recent interest in structured
Isometry Property (RIP) is a powerful condition on measurement systems because unstructured random mea-
measurement operators which ensures robust recovery ¢ rements (e.g., dense Gaussian random matrices) may

of sparse vectors is possible from noisy, undersampled b desirable due t limitati tati |
measurements via computationally tractable algorithms. ©€ Undesirable aue to memory imitations, computationa

Early papers in CS showed that Gaussian random matrices COSts, or specific constraints in the data acquisition
satisfy the RIP with high probability, but such matrices are  architecture. Many structured systems have been stud-

usually undesirable in practical applications due to storage jed, including random convolution systems (described

limitations, computational considerations, or the mismatch by partial Toeplitz [5] and circulant matrices [6]) and
of such matrices with certain measurement architectures.

To alleviate some or all of these difficulties, recent research deterministic matrix constructions [7].
efforts have focused on structured random matrices. In In this paper, we consider the special case of random
thLS paper,hwt?l StEdy b'r?‘:k di_agg_“a' mel""_su_remlf”té“a”i‘%es block diagonal matrices that are zero everywhere except
‘r';n%r;ﬁa%atrig? T?]rétn?a?:]alpesiﬁtgoor}at;]sisltS;aer ?ﬁs\f’\;:n along the main diagonal [8-10]. While such matrices
that such matrices can indeed satisfy the RIP but that have many fewer degrees of randomness (and there-
the requisite number of measurements depends on the fore require fewer memory resources), they are also
coherence of the basis in which the signals are sparse. Inparticularly useful for representing acquisition systems
ghe best Ctﬁse—for tsi.gnals thfat are spalrse in thﬁ freq&‘ency with architectural constraints that prevent global data
O e ek o Sens® aggtegation. For exampl,this type of architecture arses
nonzero entries. in distributed sensing systems where communication
constraints limit the dependence of each measurement to
only a subset of the data and in streaming applications
where signals have datarates that necessitate operating
on local signal blocks rather than the entire signal si-
ultaneously. In these scenarios, the data may be divided

turally into discrete blocks, with each block acquired

Index Terms—Compressive Sensing, Block Diagonal Ma-
trices, Restricted Isometry Property

I. INTRODUCTION

The literature on compressive sensing (CS) has est
lished that many matrices sgtlsfy the Restnc?ed Isome\r,}/a a local measurement operator.
Property (RIP), guaranteeing a stable (distance pre- ) o
serving) embedding of sparse signals when using an’o make things goncrete, for some.posnwe_ llntegers
undersampled linear measurement system [1]. The RfpV, We model a signak € R’ as being partitioned
is valuable because it ensures a type of informatidRto J blocks z1,xa,... s €RY. As an example,
preservation in the low-dimensional measurement spade, c8n be a video sequence and,z,...,z; can
and it is often used to establish guarantees on robl the individual frames in the video. For eaghc
signal recovery and signal processing in the compress@sér?v -..,J}, we suppose that a linear operatéy :
domain [2]. Recently, it has also been shown that if 8 — R* collects the measuremenis = ©;z;. In
matrix satisfies the RIP, that matrix (with its columrPUr €xample, this means that each video frameis

signs randomized) can also be used to stably emb@gasured with a different operator. Concatenating all of
.. . . . . i JM
a finite collection of points [3] or a low-dimensionalth® measurements into a vectpe R, we then have

submanifold [4]. 1" , T
*Corresponding Author. HLY and CJR are with the School of Elec Y2 Py T2

trical and Computer Engineering at the Georgia Instituteszfifiology. : = . : ’ 1)

AE and MBW are with the Division of Engineering at the Colavad : : :

School of Mines. This work was partially supported by NSFngsa YJ b, T

CCF-0830456 and CCF-0830320 and by DSO National Laboestori ——

of Singapore. y: Mx1 ®: MxN z:Nx1



where M = JM and N = JN. Thus we see that the suppose we acquire the noisy measuremgrﬁscfaJre
overall measurement operatdrwill have a characteris- with |e|]|2 < 7. Leta be the unique solution of:
tic block diagonal structure.

In this paper, we suppose that each local measure- i I2]lx subject tof|®z —y[> < ». 2)
ment operator®; is a random matrix populated withThen
independent and identically distributed (i.i.d.) zero mea os(a)

[l —@ll2 < Cin+ Cy

®)

Gaussian random variables. Following [10], we say that

the resulting® has aDistinct Block Diagonal(DBD) whereos(a); = inf {||a — 2|1 : = is S-spars# is the
structure.

. o . error (measured in the/; norm) of the bestS-term
Our main result is in establishing that undersampl

(ie, N < N) DBD matrices can indeed satisfy th(;‘e&ipproximation ofe, and C', Cy are some constants.

RIP but that the requisite number of measurements _ Thus for an input vectorr and measurement operator
depends on the basis in which the signals are sparfesatisfying the RIP, solving thé,-minimization pro-
Surprisingly, we show that when the signals of intere§fam guarantees an outpaitwhose distance fron is
are sparse in the frequency domain, DBD matricd¥punded both by the measurement noise level and by
satisfy the RIP with approximately the same number &fe distance fromu to its bestS-term approximation.
rows required in a dense Gaussian matrix (despite havidgnen® is anM x N matrix populated with i.i.d. Gaus-
many fewer nonzero entries). sian random variables having mean zero and variance
M~ it is known that® satisfies RIP-,d) with high
probability whenM = O (672S1log(N/5S)). Therefore
nonadaptively measuring a veciwvia a random matrix

In this section, we formally state the main concept&@n be nearly as efficient as adaptively recording $he
that are relevant for this work (including the RIP) and@rgest terms of the vector directly.
present notation that will be used throughout the paper.!n this paper, we are interested in showing that random

We also give a brief overview of work related to thd?BD matrices can also satisfy the RIP and can therefore
study of block diagonal matrices. be successfully used to measure sparse vectors. The

proof techniques that we employ require an alternative
(but equivalent) formulation of the RIP. Define the set

\/g ’

IIl. BACKGROUND AND RELATED WORK

A. RIP and Compressive Sensing of all (normalized)S-sparse vectors as:
We say that a vectar € CV is S-sparse if| ol < S, T — {a cch. lallo < S, |lalz < 1},
where || - ||o counts the number of nonzero entries in B N

a vector. Matrices which satisfy the RIP preserve thgnd define the following norm on HermitialV x N
norms of sparse vectors. This is codified in the followingnhatrices:

definition.

o _ . = AJl = sup [o" Aal.
Definition 1.1. A linear operator® : CV — CM €T
satisfies thdRestricted Isometry Propertf orderS and Note that the sparsity leveb of the vectors under
conditioningd (or RIP-(S, 6) in short) if for all S-sparse  consideration is implicit in the definition of this norm.
a € CN, we have: Then we see that a matrik satisfies RIP-§, d) if and

~ only if
(1=8)llall5 < [[Pall5 < (1+6)[al3. Y

If an undersampled matrix® satisfies RIP4S, 0), ’HE’H&) _IH‘ <90

then we see 2that for any twe-sparse vectors: and |y Section IV-A, we shall see that by writing the condi-
v, [[®u — ®v|[3 = |lu— v[|5. This distance preservationioning this way, we will be able to draw on powerful

allows sparse vectors to be recovered from undersampled,its for bounding the suprema of random processes.
measurements using standard techniques sucli;-as

minimization [1]. For example, the following theoremg cgoherence and Universality
guantifies guarantees on robust recovery of sparse (an

: (R/Iany natural signals can be sparsified when trans-
nearly sparse) vectors from noisy measurements.

~ formed in an orthonormal basis. In particular, we say
Theorem 11.1. [11] Assume a matrix satisfies RIP- that a signal: € C" is S-sparse in an orthonormal basis
(25, 9) with § < 0.4651. Leta € CV be any vector and U € CV*N if ||UHz||o < S. Such signals can also be



recovered from compressive measurements much like timatrices that are populated with Rademathemtries

sparse vectors described in Section II-A. In particulaand that have only one measurement per blatk £

given noisy measuremenis = ®x + ¢ of a signalz 1) [12,13]. In [12], the bound is specific to Fourier

that is exactly or approximately sparse in a bdgisit sparse signals and in [13], an additional step of randomly

is straightforward to adapt (2) to recover an estimate sfibsampling the measurements is considered.

x: one simply setsdb := ®U, solves fora as in (2),

and setst = Ua. SinceU is assumed to be unitary, it I1l. RIP FORDBD MATRICES

follows that||z — Z||2 = ||a — al|2, wherea = Uz,

and (3) provides a bound djx — al|2. Therefore, if0U

satisfies the RIP, one can ensure tfat— z||; is small _

for signals that are sparse (or nearly sparse) in the ba&Reorem Ill.1. SupposeN,S > 2 and supposeP €

U. RMXN (with M < N) is a random DBD matrix as
Some distributions of random matricés (such as defined in(1) with i.i.d. Gaussian entries of zero mean

dense Gaussian matrices) are known toub&versalin  and variances? = % Also supposé/ € CN*VN is a

that, for any fixed orthobasis, ®U is as likely to satisfy unitary matrix representing a basis. Lét := ®U and

the RIP asp itself. Such matrices can therefore be use¢hoose an RIP conditioning < & < 1. If the total

equally well for sensing signals that are sparse in amyimber of measurements satisfies

known basis. Based on a past analysis of the statistical _ _

properties of random DBD matrices [10], however, it M > 6—55;7?] log?(S) log*(N),

is unlikely that these matrices will be universal. For a ] _

given orthobasig/, then, it will be important for us to Where Cs is a constant and wherejy =

understand the impact @f in determining whethe®/ ~ min {\/77 MU}7 then with probability at least —8N 1,

Our main RIP result for DBD matrices is encapsulated
in the following theorem, which we prove in Section IV.

satisfies the RIP. ® satisfies RIP-§,0), i.e.,
The critical characterization of an orthobagiswill o _
be itscoherencewhich is defined to be IP’{‘H<I>H<I> - IH’ > 5} <8N
pu =V Nl<ma}<<ﬁ‘up,q|a Using the fact thaflog(S) < log(N), we first see
SP.9>

that the number of measurements required to satisfy the

where {u, .} are the entries of the matrik’. To be RIP scales likeO (Sﬁ%, logﬁ(ﬁ)). We also note that

precise,uy is a measure of the coherence between tqe< [i%, < J, where the lower bound is attained when

basisU and the canonical basis, i.e., the maximum INNEL the Fourier basis. Thus, when measuring signals that
product between the rows (HNand the columns of. are sparse in the frequency domain, we see the surprising
Further note that <y < V'N, where the minimum result that a DBD matrix performs nearly as well (within
is attained by a basis that is perfectiycoherentwith  |oq factors) as a fully dense random matrix of an equiv-
the canonical basis (e.g., the Fourier basis [1]), and tBgsnt size. On the other hand, when the bais highly
maximum is attained by the canonical basis itself.  coherent with the canonical basis, the requisite number
C. Related Work of mea_sure_mentM is proportiongl toSJ (?nstead ofS
' ) ) ) as desired in the best case). While possibly unfavorable,
Block diagonal matrices have been the subject of ilis humber can still be parsimoniouﬂ(<< N) if the
concentration of measuranalysis in [8-10], where it sparsity levelS of the signalz is much less than the
was proved that the probability of ensurifigz|]3 ~ length N of each signal block: ;.
||z||3 depends on the characteristics of the signaself, In fact whenU = I (and p]ossibly for allU such
but that for the best case signals, DBD matrices Cqf¢ p2 > J), we cannot expect to satisfy the RIP
exhibit the same concentration performance as der‘wﬁh a namber of measuremenf much less than

Gaussian matrices. Our paper extends these previ%l S.J log(N)). To see why, suppose we have a signal
results by showing that DBD matrices populated with . L .
whose S nonzero entries are located within a single

Gaussian entries can indeed satisfy the RIP for sign%l%ckx_ We then know that the number of rodd in
that are sparse in an arbitrary basisbut that the requi- >, canﬁ]'ot be less tha® (5*2510g(N/S)) for the RIP

f)lfteUnumber of measurements depends on the COherepoé%old sinced; itself is a Gaussian random matrix [1].

] Th'$ workis also a generahzaﬂ_on of pr_ewous results 1A Rademacher random variable takes a valuel adr —1, each
in which RIP bounds are essentially derived for DBD\ith probability 1.
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Since the RIP is a uniform bound over &l-sparse that ||Y,||x < By almost surelylLetY = || > Y. | x.

signals, we must take at least this many measuremeiitsen for anyu,t > 1,

in each block. Therefore, our results are tight (to within 2 4

log factors) for the canonical basis. PlY > G5 (uE{Y} +tB2)} < e +e

IV. PROOE OETHEOREM 1.1 Using thgse two lemmas, the prqof of our main result
: ' proceeds in two stages. In Section IV-B, we apply

The proof of this theorem utilizes recent creative tech-oma 1v1 to our quantity of intere t‘ FHG _ IHD

hiques for bounding isometry constants via the extrer@ establish a bound on its expectation. In Section IV-C

?f”rwdc\)/n} prcl)ceslse;] [12;11']' tlrn pt)arrtm;ulrafl,_hourr 2:10 e then use Lemma IV.2 to confirm that this quantity is
oflows very closely the proot SIucture Tor Theorem 4, tact small with high probability.

in [12]. In short, we first show tth{m@Hff) — IW} <

¢ if we pick M large enough. Once this is established, _ _

we complete the proof by applying a tail bound on th8. Bounding Expectation

random variable‘ ‘I’H‘I’—I‘ to establish that “bad” The following lemma establishes a bound for
matrices occur with very low probability. ’H(SH(T) _ IH‘ in expectation.

A. Important Lemmas Lemma IV.3. Pick an RIP conditioning) < ¢’ < 1. If
In order to prove Theorem lIl.1, we draw mainly on — 12802 ) P

two recent results from the literature. This section defines M 2 —=5= S by log™(S) log™(N),

notation and states those results so they can be employgld C

where appropriate. B :
First, for 1 < m < M, let the i-th row of & be E{’H&BH% _IW} <6

represented by wheregz; € CV. It is not difficult to

see thatb” & can be written as a sum of independent  proof To begin, we note thatE EISH@} =

rank-1 operators: E{UHo"oU) = UHE{®"d} U = UMU = I. Also,

appearing in Lemma V.1, then

~ e Mo . each entry¢s 5 of the matrix @ can be written in
PP = Z b ® Py (4)  the formY>, ¢ rur 7, Which can be viewed as a sum
m=1 of independent zero mean Gaussian random variables

where for any vecton € CV, a@a := aa’ is theouter having different variances. Thus, by using a general
product of the vector. The first lemma, originally statedorm of the Khinchine inequality (Corollary 12 in [15])
in [14] and later refined in [12], shows that we can boun@nd taking union bounds, it is possible to bound the
the expected norm of a random sum of rank-1 operatofd@&ximum squared entry @b in expectation:
Lemma IV.1. [12,14]Let {¢-) be a (fixed) sequence =~ _, 8log N

nma V1. 12, 18] Let {9} be a (fxed) sequer {3512} < 7 25 ©)
of M vectors inC" that have bounded entries, i.e., m
¢ llsc < B1, and let{¢z } be a Rademacher sequencerhis simply means that the quantif§; in Lemma IV.1

Then » can be bounded in expectation By B} < ﬁ%w.
~ ~ L HFHEH ;
E{ } <3 Z(bm ® b Let-E _EHH@ ) Im} beNthe;expectatlon of the
™ quantity of interest and recall thé@’ @ can be expressed
— — as a sum of rank-1 operators as in (4). Then using a
where 3 < C4B1V/Slog Sy/log Ny/log M for a uni- standard symmetrization procedure (take for example
versal constantCy. Lemma 69 in [15]), we can establish that
The second lemma establishes a tail bound for randogn

2E ‘H 2bm @ b
variables in a Banach space. { Zé‘ b © b }

Lemma IV.2. [12] LetY,Y5,..., YR beindependent, - QE{%}{E{Em}{H‘Z%d’ﬁ ® %\H} |{¢77l}}’
symmetrié random variables in a Banach spagésuch where {¢} is a Rademacher sequence independent of

2A random variableY” is symmetricif Y and —Y have the same {¢r~n} and the se_cond Stat?ment simply uses the _IaW of
probability distribution. iterated expectation. Applying Lemma IV.1 to the inner

)

Zfﬁz(gﬁz ® b

IA




expectation yields: where {5;%} are independent copies ¢f;}. We will
useY as a proxy forZ since the summands &f are

~ ~ /2
E < QE{(E%}{B H‘Z O ® qﬁmm } symmetric random variablésThe random variable¥”
and Z are related by the following inequality (see for
< /1351087 S1og? N - \/E{B2} - example (15) in [12]):
B N P{Z > 2E{Z} + u} <2P{Y > u}. 7)
E{ quﬁ“@% } ©®  Eom the triangle inequality we have the additional

relation:
where the second line follows from the Cauchy-Schwarz

inequality. Applying (4), we observe that

B{{[320n @ éall)

E{Y} < 2E{Z}. (8)

E{H‘(f)Hi — I+ I‘H} To bound the summands of, first define the events
< E+1, {Fw} and F:

{maX{H%ﬁzII omlI%} < i
ﬂFm.

3202572, log? Slog® N =
E< \/ ~ VE +1. From basic norm inequalities, it can be shown that under

M the eventF, all of the summands of are bounded in
By manipulating the above inequality, we find that (se@

for example [12]) because the conditions of Lemma V.

where the second step follows from the triangle mequa};
ity. Combining this statement with the bounds in (5) and
(6), we have the following bound on the expectation:

14logN}

F

Il norm by By := 2890 o8N Trys. we define a

uncated version of to which we may apply Lemma

320 Su log, Slog® N
imply that Y < 1, then: V.2
2Q752 M ~ ~ ~ ~
E<2\/320 2SpiZ log® S log® N Y, = Z(qsﬁl@qsﬁ—qs%@qs%)]lpm ,
M m=1
Requiring the right hand side to be less thhamoncludes wherel s is the indicator function of the eveift;,. The
the proof. B following relates the probability distributions &f and
Y::

C. Tail Bound

We complete the proof of Theorem Ill.1 by arguing
that ’H@H@ IH‘ must be small with high probability.
First, using (4) and the fact thﬁ{@Htﬁ} =1, we

see that Thus we need to calculate the probability of occur-
rence of eventF°. Because (5) provides a bound on

P{Y > v} P{Y > v|F}P{F} +
P{Y > v|F°} P{F°}

P{Y; > v} + P{F°}. 9)

IN

— |l3H& ~ i o
Z = H’(I) e - IH‘ E{maxﬁl H%Hgo}, from an appropriate application of
Mo N N _ the Markov inequality, one can show that
= > (¢m ®om —Egg }{¢m ® ¢m}> ; 5
m ~ 141 N =
=1 P{maxnmnzo > i = } <N

Although Z consists of a sum of independent random

variables, we cannot apply Lemma IV.2 directly to thist follows that
sum because it is unclear whether the summands are
symmetric and we do not have a satisfactory bound

on the norms of the summands. As such consider the

random variable

P{F¢} < 2N~ (10)

M

~ ~ ~ ~ 3If z is a random variable ang is an independent copy af then
Pp— ~ ~ / / . o . ! .
Y= E (¢m ® Pm — (bm ® (bm) ) y = z — 2’ is a symmetric random variable (called tegmmetrized
m=1 versionof z).



From Lemma IV.3, we know that it < ¢’ < 1 and
128C%
(0")
then E{Z} < ¢’. Under this condition onM, and

supposing the event’ occurs, then

7 (5/)2

M > Sp2, log? S'log® Kﬂ

11)

that are sparse in the frequency domain, a random DBD
matrix requires essentially the same number of rows (up
to a poly-logarithmic factor in the ambient dimension)
as a Gaussian random matrix.

There are several interesting directions for future anal-
ysis of block diagonal matrices. For example, it would be
useful to know what other random distributions could be
used to populate these matrices. It would also be useful

o= 3207 log? S'log® N
Thus, applying Lemma V.2 td; with u,t > 1 gives
P{Y; > C5 (uE{Y;} + tB2)} < e et
Recalling the bound o, in (11) and noting th4t
E{Y;} <E{Y} < 2E{Z}, [1]

we setu = \/log N and¢ = log N and conclude that [

(9)° )}
3207 log? Slog]\~f
<2N~L

IP’{Yt > Cs (2 log N&' + -

[4]
Substitutingd’ = —<2_ with Cs < 1 to be chosen

log N . .
below, we get (after some manipulations):

7 ~
P Y, 24 —— <2N~ %
{ i > Cs < + 32OZ>065} <
To remove the dependence on the evEntapply (9)
together with (10) to give:

7 -1
5 — < .
]P’{Y > (s (2+ 3202) 065} <4N

Further applying (7) and the fact thB{Z} < ¢’ < Cgd
gives us:

7 S-1
— < .
P{Z > |:C5 (2+ 3262) +2:| 065} <8N

(5]
(6]
(7]

(8]

(9]

1 [
completes the

ChoosingCs < |C5 (2 + ﬁ) + 2}
proof of Theorem IlI.1.

[11]
V. SUMMARY AND FUTURE WORK (2]
In this paper, we have showed that random DBD
matrices populated with i.i.d. Gaussian entries can yatisf
the RIP. Our main result indicates that the requisitg
number of measuremenfd scales linearly in the spar-
sity level S, quadratically in the coherengg, of the
sparse basis, and poly-logarithmically in the ambiefpiy
dimension N. We note that, when considering signals

4The proof of the first inequality requires us to multiply thel15]
summands ofY; by Rademacher sequence, which does not change
the distribution ofY” (see [12] for details).

to study the effects of either generalizing this architetu
(e.g., having a different number of measuremetsin
each block) or restricting this architecture (e.g., rejpgat
a single block along the main diagonal).
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