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The Restricted Isometry Property
for Block Diagonal Matrices
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Abstract—In compressive sensing (CS), the Restricted
Isometry Property (RIP) is a powerful condition on
measurement operators which ensures robust recovery
of sparse vectors is possible from noisy, undersampled
measurements via computationally tractable algorithms.
Early papers in CS showed that Gaussian random matrices
satisfy the RIP with high probability, but such matrices are
usually undesirable in practical applications due to storage
limitations, computational considerations, or the mismatch
of such matrices with certain measurement architectures.
To alleviate some or all of these difficulties, recent research
efforts have focused on structured random matrices. In
this paper, we study block diagonal measurement matrices
where each block on the main diagonal is itself a Gaussian
random matrix. The main result of this paper shows
that such matrices can indeed satisfy the RIP but that
the requisite number of measurements depends on the
coherence of the basis in which the signals are sparse. In
the best case—for signals that are sparse in the frequency
domain—these matrices perform nearly as well as dense
Gaussian random matrices despite having many fewer
nonzero entries.

Index Terms—Compressive Sensing, Block Diagonal Ma-
trices, Restricted Isometry Property

I. I NTRODUCTION

The literature on compressive sensing (CS) has estab-
lished that many matrices satisfy the Restricted Isometry
Property (RIP), guaranteeing a stable (distance pre-
serving) embedding of sparse signals when using an
undersampled linear measurement system [1]. The RIP
is valuable because it ensures a type of information
preservation in the low-dimensional measurement space,
and it is often used to establish guarantees on robust
signal recovery and signal processing in the compressed
domain [2]. Recently, it has also been shown that if a
matrix satisfies the RIP, that matrix (with its column
signs randomized) can also be used to stably embed
a finite collection of points [3] or a low-dimensional
submanifold [4].
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There has been significant recent interest in structured
measurement systems because unstructured random mea-
surements (e.g., dense Gaussian random matrices) may
be undesirable due to memory limitations, computational
costs, or specific constraints in the data acquisition
architecture. Many structured systems have been stud-
ied, including random convolution systems (described
by partial Toeplitz [5] and circulant matrices [6]) and
deterministic matrix constructions [7].

In this paper, we consider the special case of random
block diagonal matrices that are zero everywhere except
along the main diagonal [8–10]. While such matrices
have many fewer degrees of randomness (and there-
fore require fewer memory resources), they are also
particularly useful for representing acquisition systems
with architectural constraints that prevent global data
aggregation. For example, this type of architecture arises
in distributed sensing systems where communication
constraints limit the dependence of each measurement to
only a subset of the data and in streaming applications
where signals have datarates that necessitate operating
on local signal blocks rather than the entire signal si-
multaneously. In these scenarios, the data may be divided
naturally into discrete blocks, with each block acquired
via a local measurement operator.

To make things concrete, for some positive integers
J,N , we model a signalx ∈ R

JN as being partitioned
into J blocks x1, x2, . . . , xJ ∈ R

N . As an example,
x can be a video sequence andx1, x2, . . . , xJ can
be the individual frames in the video. For eachj ∈
{1, 2, . . . , J}, we suppose that a linear operatorΦj :
R

N → R
M collects the measurementsyj = Φjxj . In

our example, this means that each video framexj is
measured with a different operator. Concatenating all of
the measurements into a vectory ∈ R

JM , we then have



y1

y2

...
yJ




︸ ︷︷ ︸
y: fM×1

=




Φ1

Φ2

. . .
ΦJ




︸ ︷︷ ︸
Φ: fM× eN




x1

x2

...
xJ




︸ ︷︷ ︸
x: eN×1

, (1)



whereM̃ = JM and Ñ = JN . Thus we see that the
overall measurement operatorΦ will have a characteris-
tic block diagonal structure.

In this paper, we suppose that each local measure-
ment operatorΦj is a random matrix populated with
independent and identically distributed (i.i.d.) zero mean
Gaussian random variables. Following [10], we say that
the resultingΦ has aDistinct Block Diagonal(DBD)
structure.

Our main result is in establishing that undersampled
(i.e., M̃ < Ñ ) DBD matrices can indeed satisfy the
RIP but that the requisite number of measurementsM̃
depends on the basis in which the signals are sparse.
Surprisingly, we show that when the signals of interest
are sparse in the frequency domain, DBD matrices
satisfy the RIP with approximately the same number of
rows required in a dense Gaussian matrix (despite having
many fewer nonzero entries).

II. BACKGROUND AND RELATED WORK

In this section, we formally state the main concepts
that are relevant for this work (including the RIP) and
present notation that will be used throughout the paper.
We also give a brief overview of work related to the
study of block diagonal matrices.

A. RIP and Compressive Sensing

We say that a vectorα ∈ C
eN is S-sparse if‖α‖0 ≤ S,

where ‖ · ‖0 counts the number of nonzero entries in
a vector. Matrices which satisfy the RIP preserve the
norms of sparse vectors. This is codified in the following
definition.

Definition II.1. A linear operator Φ̃ : C
eN → C

fM

satisfies theRestricted Isometry Propertyof orderS and
conditioningδ (or RIP-(S, δ) in short) if for all S-sparse
α ∈ C

eN , we have:

(1 − δ)‖α‖2
2 ≤ ‖Φ̃α‖2

2 ≤ (1 + δ)‖α‖2
2.

If an undersampled matrix̃Φ satisfies RIP-(2S, δ),
then we see that for any twoS-sparse vectorsu and
v, ‖Φ̃u − Φ̃v‖2

2 ≈ ‖u − v‖2
2. This distance preservation

allows sparse vectors to be recovered from undersampled
measurements using standard techniques such asℓ1-
minimization [1]. For example, the following theorem
quantifies guarantees on robust recovery of sparse (and
nearly sparse) vectors from noisy measurements.

Theorem II.1. [11] Assume a matrix̃Φ satisfies RIP-
(2S, δ) with δ < 0.4651. Let α ∈ C

eN be any vector and

suppose we acquire the noisy measurementsy = Φ̃α+e
with ‖e‖2 ≤ η. Let α̂ be the unique solution of:

min
z

‖z‖1 subject to‖Φ̃z − y‖2 ≤ η. (2)

Then

‖α − α̂‖2 ≤ C1η + C2

σS(α)1√
S

, (3)

whereσS(α)1 := inf {‖α − z‖1 : z is S-sparse} is the
error (measured in theℓ1 norm) of the bestS-term
approximation ofα, and C1, C2 are some constants.

Thus for an input vectorα and measurement operator
Φ̃ satisfying the RIP, solving theℓ1-minimization pro-
gram guarantees an outputα̂ whose distance fromα is
bounded both by the measurement noise level and by
the distance fromα to its bestS-term approximation.
WhenΦ is anM̃ ×Ñ matrix populated with i.i.d. Gaus-
sian random variables having mean zero and variance
M̃−1, it is known thatΦ satisfies RIP-(S, δ) with high
probability whenM̃ = O

(
δ−2S log(N/S)

)
. Therefore

nonadaptively measuring a vectorα via a random matrix
can be nearly as efficient as adaptively recording theS
largest terms of the vector directly.

In this paper, we are interested in showing that random
DBD matrices can also satisfy the RIP and can therefore
be successfully used to measure sparse vectors. The
proof techniques that we employ require an alternative
(but equivalent) formulation of the RIP. Define the set
of all (normalized)S-sparse vectors as:

T :=
{

α ∈ C
eN : ‖α‖0 ≤ S , ‖α‖2 ≤ 1

}
,

and define the following norm on HermitiañN × Ñ
matrices:

|||A||| := sup
α∈T

|αHAα|.

Note that the sparsity levelS of the vectors under
consideration is implicit in the definition of this norm.
Then we see that a matrix̃Φ satisfies RIP-(S, δ) if and
only if

∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣ ≤ δ.

In Section IV-A, we shall see that by writing the condi-
tioning this way, we will be able to draw on powerful
results for bounding the suprema of random processes.

B. Coherence and Universality

Many natural signals can be sparsified when trans-
formed in an orthonormal basis. In particular, we say
that a signalx ∈ C

eN is S-sparse in an orthonormal basis
U ∈ C

eN× eN if ‖UHx‖0 ≤ S. Such signals can also be

2



recovered from compressive measurements much like the
sparse vectors described in Section II-A. In particular,
given noisy measurementsy = Φx + e of a signalx
that is exactly or approximately sparse in a basisU , it
is straightforward to adapt (2) to recover an estimate of
x: one simply sets̃Φ := ΦU , solves forα̂ as in (2),
and setŝx = Uα̂. SinceU is assumed to be unitary, it
follows that ‖x − x̂‖2 = ‖α − α̂‖2, whereα = UHx,
and (3) provides a bound on‖α− α̂‖2. Therefore, ifΦU
satisfies the RIP, one can ensure that‖x − x̂‖2 is small
for signals that are sparse (or nearly sparse) in the basis
U .

Some distributions of random matricesΦ (such as
dense Gaussian matrices) are known to beuniversal in
that, for any fixed orthobasisU , ΦU is as likely to satisfy
the RIP asΦ itself. Such matrices can therefore be used
equally well for sensing signals that are sparse in any
known basis. Based on a past analysis of the statistical
properties of random DBD matrices [10], however, it
is unlikely that these matrices will be universal. For a
given orthobasisU , then, it will be important for us to
understand the impact ofU in determining whetherΦU
satisfies the RIP.

The critical characterization of an orthobasisU will
be itscoherence, which is defined to be

µU :=
√

Ñ max
1≤p,q≤ eN

|up,q|,

where {up,q} are the entries of the matrixU . To be
precise,µU is a measure of the coherence between the
basisU and the canonical basis, i.e., the maximum inner
product between the rows ofU and the columns ofI.
Further note that1 ≤ µU ≤

√
Ñ , where the minimum

is attained by a basis that is perfectlyincoherentwith
the canonical basis (e.g., the Fourier basis [1]), and the
maximum is attained by the canonical basis itself.

C. Related Work

Block diagonal matrices have been the subject of a
concentration of measureanalysis in [8–10], where it
was proved that the probability of ensuring‖Φx‖2

2 ≈
‖x‖2

2 depends on the characteristics of the signalx itself,
but that for the best case signals, DBD matrices can
exhibit the same concentration performance as dense
Gaussian matrices. Our paper extends these previous
results by showing that DBD matrices populated with
Gaussian entries can indeed satisfy the RIP for signals
that are sparse in an arbitrary basisU , but that the requi-
site number of measurements depends on the coherence
of U .

This work is also a generalization of previous results
in which RIP bounds are essentially derived for DBD

matrices that are populated with Rademacher1 entries
and that have only one measurement per block (M =
1) [12, 13]. In [12], the bound is specific to Fourier
sparse signals and in [13], an additional step of randomly
subsampling the measurements is considered.

III. RIP FOR DBD MATRICES

Our main RIP result for DBD matrices is encapsulated
in the following theorem, which we prove in Section IV.

Theorem III.1. SupposeÑ , S > 2 and supposeΦ ∈
R

fM× eN (with M̃ ≤ Ñ ) is a random DBD matrix as
defined in(1) with i.i.d. Gaussian entries of zero mean
and varianceσ2 = 1

M . Also supposeU ∈ C
eN× eN is a

unitary matrix representing a basis. Let̃Φ := ΦU and
choose an RIP conditioning0 < δ < 1. If the total
number of measurements satisfies

M̃ ≥ C3

δ2
S µ̃2

U log2(S) log4(Ñ),

where C3 is a constant and whereµ̃U :=

min
{√

J, µU

}
, then with probability at least1−8Ñ−1,

Φ̃ satisfies RIP-(S, δ), i.e.,

P

{∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣ > δ

}
≤ 8Ñ−1.

Using the fact thatlog(S) ≤ log(Ñ), we first see
that the number of measurements required to satisfy the
RIP scales likeO

(
Sµ̃2

U log6(Ñ)
)

. We also note that

1 ≤ µ̃2
U ≤ J , where the lower bound is attained whenU

is the Fourier basis. Thus, when measuring signals that
are sparse in the frequency domain, we see the surprising
result that a DBD matrix performs nearly as well (within
log factors) as a fully dense random matrix of an equiv-
alent size. On the other hand, when the basisU is highly
coherent with the canonical basis, the requisite number
of measurements̃M is proportional toSJ (instead ofS
as desired in the best case). While possibly unfavorable,
this number can still be parsimonious (̃M ≪ Ñ ) if the
sparsity levelS of the signalx is much less than the
lengthN of each signal blockxj .

In fact whenU = I (and possibly for allU such
that µ2

U ≥ J), we cannot expect to satisfy the RIP
with a number of measurements̃M much less than
O

(
SJ log(Ñ)

)
. To see why, suppose we have a signal

x whoseS nonzero entries are located within a single
block xj . We then know that the number of rowsM in
Φj cannot be less thanO

(
δ−2S log(N/S)

)
for the RIP

to hold sinceΦj itself is a Gaussian random matrix [1].

1A Rademacher random variable takes a value of1 or −1, each
with probability 1

2
.
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Since the RIP is a uniform bound over allS-sparse
signals, we must take at least this many measurements
in each block. Therefore, our results are tight (to within
log factors) for the canonical basis.

IV. PROOF OFTHEOREM III.1

The proof of this theorem utilizes recent creative tech-
niques for bounding isometry constants via the extrema
of random processes [12–14]. In particular, our proof
follows very closely the proof structure for Theorem 2
in [12]. In short, we first show thatE

{∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣
}
≤

δ if we pick M̃ large enough. Once this is established,
we complete the proof by applying a tail bound on the
random variable

∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣ to establish that “bad”

matrices occur with very low probability.

A. Important Lemmas

In order to prove Theorem III.1, we draw mainly on
two recent results from the literature. This section defines
notation and states those results so they can be employed
where appropriate.

First, for 1 ≤ m̃ ≤ M̃ , let the m̃-th row of Φ̃ be
represented bỹφH

em whereφ̃ em ∈ C
eN . It is not difficult to

see thatΦ̃HΦ̃ can be written as a sum of independent
rank-1 operators:

Φ̃HΦ̃ =

fM∑

em=1

φ̃ em ⊗ φ̃ em, (4)

where for any vectora ∈ C
N , a⊗a := aaH is theouter

product of the vector. The first lemma, originally stated
in [14] and later refined in [12], shows that we can bound
the expected norm of a random sum of rank-1 operators.

Lemma IV.1. [12, 14] Let {φ̃ em} be a (fixed) sequence
of M̃ vectors in C

eN that have bounded entries, i.e.,
‖φ̃ em‖∞ ≤ B1, and let{ξ em} be a Rademacher sequence.
Then

E

{∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

em

ξ emφ̃ em ⊗ φ̃ em

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

}
≤ β

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

em

φ̃ em ⊗ φ̃ em

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

1/2

,

where β ≤ C4B1

√
S log S

√
log Ñ

√
log M̃ for a uni-

versal constantC4.

The second lemma establishes a tail bound for random
variables in a Banach space.

Lemma IV.2. [12] Let Y1, Y2, . . . , YR be independent,
symmetric2 random variables in a Banach spaceX such

2A random variableY is symmetricif Y and−Y have the same
probability distribution.

that ‖Yr‖X ≤ B2 almost surely. Let Y = ‖∑
r Yr‖X .

Then for anyu, t > 1,

P{Y > C5 (uE{Y } + tB2)} ≤ e−u2

+ e−t.

Using these two lemmas, the proof of our main result
proceeds in two stages. In Section IV-B, we apply
Lemma IV.1 to our quantity of interest

(∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣
)

to establish a bound on its expectation. In Section IV-C,
we then use Lemma IV.2 to confirm that this quantity is
in fact small with high probability.

B. Bounding Expectation

The following lemma establishes a bound for∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣ in expectation.

Lemma IV.3. Pick an RIP conditioning0 < δ′ < 1. If

M̃ ≥ 128C2
4

δ′2
S µ̃2

U log2(S) log3(Ñ),

for C4 appearing in Lemma IV.1, then

E

{∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣
}
≤ δ′.

Proof: To begin, we note thatE
{

Φ̃HΦ̃
}

=

E
{
UHΦHΦU

}
= UH

E
{
ΦHΦ

}
U = UHU = I. Also,

each entryφ̃ em,en of the matrix Φ̃ can be written in
the form

∑
k φ em,kuk,en, which can be viewed as a sum

of independent zero mean Gaussian random variables
having different variances. Thus, by using a general
form of the Khinchine inequality (Corollary 12 in [15])
and taking union bounds, it is possible to bound the
maximum squared entry of̃Φ in expectation:

E

{
max

em
‖φ̃ em‖2

∞

}
≤ µ̃2

U

8 log Ñ

M̃
. (5)

This simply means that the quantityB1 in Lemma IV.1
can be bounded in expectation byE

{
B2

1

}
≤ µ̃2

U
8 log eN

fM
.

Let E := E

{∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣
}

be the expectation of the

quantity of interest and recall thatΦ̃HΦ̃ can be expressed
as a sum of rank-1 operators as in (4). Then using a
standard symmetrization procedure (take for example
Lemma 69 in [15]), we can establish that

E ≤ 2E

{∣∣∣
∣∣∣
∣∣∣
∑

ξ emφ̃ em ⊗ φ̃ em

∣∣∣
∣∣∣
∣∣∣
}

= 2E{eφfm}

{
E{ξfm}

{∣∣∣
∣∣∣
∣∣∣
∑

ξ emφ̃ em ⊗ φ̃ em

∣∣∣
∣∣∣
∣∣∣
}

| {φ̃ em}
}

,

where{ξ em} is a Rademacher sequence independent of
{φ̃ em} and the second statement simply uses the law of
iterated expectation. Applying Lemma IV.1 to the inner
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expectation yields:

E ≤ 2E{eφfm}

{
β

∣∣∣
∣∣∣
∣∣∣
∑

φ̃ em ⊗ φ̃ em

∣∣∣
∣∣∣
∣∣∣
1/2

}

≤
√

4C2
4S log2 S log2 Ñ ·

√
E{B2

1} ·√√√√E

{∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
∑

em

φ̃ em ⊗ φ̃ em

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

}
, (6)

where the second line follows from the Cauchy-Schwarz
inequality. Applying (4), we observe that

E

{∣∣∣
∣∣∣
∣∣∣
∑

φ̃ em ⊗ φ̃ em

∣∣∣
∣∣∣
∣∣∣
}

= E

{∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I + I

∣∣∣
∣∣∣
∣∣∣
}

≤ E + 1,

where the second step follows from the triangle inequal-
ity. Combining this statement with the bounds in (5) and
(6), we have the following bound on the expectation:

E ≤

√
32C2

4Sµ̃2
U log2 S log3 Ñ

M̃

√
E + 1.

By manipulating the above inequality, we find that (see
for example [12]) because the conditions of Lemma IV.3

imply that 32C2

4
Seµ2

U
log2 S log3 eN
fM

≤ 1, then:

E ≤ 2

√
32C2

4Sµ̃2
U log2 S log3 Ñ

M̃
.

Requiring the right hand side to be less thanδ′ concludes
the proof.

C. Tail Bound

We complete the proof of Theorem III.1 by arguing
that

∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣ must be small with high probability.

First, using (4) and the fact thatE
{

Φ̃HΦ̃
}

= I, we
see that

Z :=
∣∣∣
∣∣∣
∣∣∣Φ̃HΦ̃ − I

∣∣∣
∣∣∣
∣∣∣

=

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

fM∑

em=1

(
φ̃ em ⊗ φ̃ em − E{eφfm}

{
φ̃ em ⊗ φ̃ em

})
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
,

Although Z consists of a sum of independent random
variables, we cannot apply Lemma IV.2 directly to this
sum because it is unclear whether the summands are
symmetric and we do not have a satisfactory bound
on the norms of the summands. As such consider the
random variable

Y :=

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

fM∑

em=1

(
φ̃ em ⊗ φ̃ em − φ̃′

em ⊗ φ̃′
em

)
∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
,

where{φ̃′
em} are independent copies of{φ̃ em}. We will

useY as a proxy forZ since the summands ofY are
symmetric random variables.3 The random variablesY
and Z are related by the following inequality (see for
example (15) in [12]):

P{Z > 2E{Z} + u} ≤ 2P{Y > u} . (7)

From the triangle inequality we have the additional
relation:

E{Y } ≤ 2E{Z} . (8)

To bound the summands ofY , first define the events
{F em} andF :

F em :=

{
max{‖φ̃ em‖2

∞, ‖φ̃′
em‖2

∞} ≤ µ̃2
U

14 log Ñ

M̃

}
,

F :=
⋂

em

F em.

From basic norm inequalities, it can be shown that under
the eventF , all of the summands ofY are bounded in
the |||·||| norm byB2 :=

28Seµ2

U
log eN

fM
. Thus, we define a

truncated version ofY to which we may apply Lemma
IV.2:

Yt :=

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

fM∑

em=1

(
φ̃ em ⊗ φ̃ em − φ̃′

em ⊗ φ̃′
em

)
IFfm

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
,

whereIFfm
is the indicator function of the eventF em. The

following relates the probability distributions ofY and
Yt:

P{Y > ν} = P{Y > ν|F}P{F} +

P{Y > ν|F c}P{F c}
≤ P{Yt > ν} + P{F c} . (9)

Thus we need to calculate the probability of occur-
rence of eventF c. Because (5) provides a bound on
E

{
max em ‖φ̃ em‖2

∞

}
, from an appropriate application of

the Markov inequality, one can show that

P

{
max

em
‖φ̃ em‖2

∞ > µ̃2
U

14 log Ñ

M̃

}
≤ Ñ−1.

It follows that

P{F c} ≤ 2Ñ−1. (10)

3If z is a random variable andz′ is an independent copy ofz, then
y := z − z′ is a symmetric random variable (called thesymmetrized
versionof z).
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From Lemma IV.3, we know that if0 < δ′ < 1 and

M̃ ≥ 128C2
4

(δ′)2
Sµ̃2

U log2 S log3 Ñ ,

then E{Z} ≤ δ′. Under this condition onM̃ , and
supposing the eventF occurs, then

B2 ≤ 7

32C2
4

(δ′)2

log2 S log2 Ñ
. (11)

Thus, applying Lemma IV.2 toYt with u, t > 1 gives

P{Yt > C5 (uE{Yt} + tB2)} ≤ e−u2

+ e−t.

Recalling the bound onB2 in (11) and noting that4

E{Yt} ≤ E{Y } ≤ 2E{Z} ,

we setu =

√
log Ñ and t = log Ñ and conclude that

P

{
Yt > C5

(
2

√
log Ñδ′ +

7

32C2
4

(δ′)2

log2 S log Ñ

)}

≤ 2Ñ−1.

Substitutingδ′ = C6δ√
log eN

with C6 < 1 to be chosen

below, we get (after some manipulations):

P

{
Yt > C5

(
2 +

7

32C2
4

)
C6δ

}
≤ 2Ñ−1.

To remove the dependence on the eventF , apply (9)
together with (10) to give:

P

{
Y > C5

(
2 +

7

32C2
4

)
C6δ

}
≤ 4Ñ−1.

Further applying (7) and the fact thatE{Z} ≤ δ′ ≤ C6δ
gives us:

P

{
Z >

[
C5

(
2 +

7

32C2
4

)
+ 2

]
C6δ

}
≤ 8Ñ−1.

ChoosingC6 ≤
[
C5

(
2 + 7

32C2

4

)
+ 2

]−1

completes the
proof of Theorem III.1.

V. SUMMARY AND FUTURE WORK

In this paper, we have showed that random DBD
matrices populated with i.i.d. Gaussian entries can satisfy
the RIP. Our main result indicates that the requisite
number of measurements̃M scales linearly in the spar-
sity level S, quadratically in the coherencẽµU of the
sparse basis, and poly-logarithmically in the ambient
dimensionÑ . We note that, when considering signals

4The proof of the first inequality requires us to multiply the
summands ofYt by Rademacher sequence, which does not change
the distribution ofY (see [12] for details).

that are sparse in the frequency domain, a random DBD
matrix requires essentially the same number of rows (up
to a poly-logarithmic factor in the ambient dimension)
as a Gaussian random matrix.

There are several interesting directions for future anal-
ysis of block diagonal matrices. For example, it would be
useful to know what other random distributions could be
used to populate these matrices. It would also be useful
to study the effects of either generalizing this architecture
(e.g., having a different number of measurementsMj in
each block) or restricting this architecture (e.g., repeating
a single block along the main diagonal).
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