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ABSTRACT
We previously presented a model for some wireless sensor
and actuator network (WSAN) applications based on the
vector space tools of frame theory. In this WSAN model
there is a weight associated to each sensor-actuator link de-
noting the importance of that communication link to the
actuation fidelity. These weights were shown to be useful in
pruning away communication links to reduce the number of
active channels. Inspired by recent work in power schedul-
ing for decentralized estimation, we investigate the optimal
allocation of system resources for achieving a desired actu-
ation fidelity. In this scheme, each sensor acquires a noisy
observation and sends a message to a subset of actuators us-
ing an MQAM transmission strategy. The message sent on
each sensor-actuator communication link is quantized with
a variable number of bits, with the number of bits optimized
to minimize the total network power consumption subject
to a constraint on the actuation distortion. We show ana-
lytically and verify through simulation that performing this
optimal power scheduling can yield significant power sav-
ings over communication strategies that use a fixed number
of bits on each communication link.

1. INTRODUCTION
Recent interest in wireless sensor networks (WSN) has led to
increased research in many areas central to distributed data
processing, including novel information processing, commu-
nications, and networking strategies. Energy conservation
to increase the functional lifespan of the WSN is very impor-
tant because the battery-powered sensors may be difficult
(or impossible) to access on a large scale for maintenance.
This energy conservation principle generally translates into
minimizing the communication among sensors to preserve
both individual node power and total network throughput.
Basic research in communications and networking can im-
prove the efficiency in transporting data from one location
to another in the network. However, these aspects are lim-
ited by the underlying information processing strategies that

determine the type and amount of data that needs to be
transported within the network to achieve the application
goal. Consequently, much of the recent sensor network re-
search has focused on adapting well-known signal process-
ing algorithms to distributed settings where individual sen-
sor nodes perform local computations to minimize the in-
formation that needs to be passed to more distant nodes
(e.g., [2, 11, 20, 23]).

Many WSN algorithms start with the assumption that there
is information contained in the sensor measurements that
must be communicated to a destination (called a sink, or a
fusion center) that is accessible by the WSN operator. In
these applications, the sink represents the notion that the
data collected in the WSN is only valuable to the extent that
it can be removed from the network. However, in many ap-
plications the implicit assumption is that the information
coming out of the network will be used to monitor the en-
vironment and take action when necessary. One example of
this is in agricultural irrigation. Soil moisture measurements
are taken precisely so irrigation levels can be adjusted to im-
prove growing conditions while conserving as much water as
possible.

A significant and natural extension to the sensor net-
work paradigm is a wireless sensor and actuator network
(WSAN). A WSAN consists of a network of sensor nodes
that can measure stimuli in the environment and a network
of actuator nodes capable of affecting their local environ-
ment. With direct communication from sensors to actua-
tors, WSANs can achieve the application goals without ag-
gregating the information in a single location or removing
it from the network. In this way, WSANs can approach the
robust and efficient ideal embodied in the mantra: “the net-
work is the processor”. Using only local communications
may become even more important in applications where the
sensor nodes are deployed under a layer of soil, thereby de-
teriorating the wireless channel and significantly reducing
the realistic communication distances [1]. While WSAN ap-
plications open the door for in-network processing, optimal
WSAN information processing strategies may be very dif-
ferent from the strategies developed for WSNs. Sensor pro-
cessing and communication strategies that blindly optimize
sensor data fidelity may not yield the best results when actu-
ation is involved. Information strategies in the WSAN must
be designed with the final actuation performance fidelity in
mind.



The task of merging sensed information directly into actions
efficiently but without centralizing the information and deci-
sion making is difficult primarily because of the redundancy
among the sensors and actuators. The coordination neces-
sary to resolve this overlap must be built into the behavior
of each individual node if no centralized controller will be
used. Fortunately, distributed sensing and actuation is mod-
eled to us in biology where neural systems perform a chain of
tasks very similar to the needs of WSANs: sensing, analysis,
and response. Furthermore, evidence indicates that neural
systems represent and process information in a distributed
way (using groups of neurons) rather than centralizing the
information and decision making in one single location. We
have recently presented a WSAN model based on neural re-
flex behaviors and leveraging the vector space tools of frame
theory to analyze the effects of sensors and actuators with
overlapping regions of influence [24]. In this model (sum-
marized in section 2), we showed that such a WSAN could
exactly implement linear actuation strategies through direct
communication from sensors to actuators and without cen-
tralizing the information. We also demonstrated that each
sensor-actuator link has an associated importance value that
can be used to efficiently determine which communication
links are least important to the final actuation fidelity and
can be eliminated to conserve power.

In the present work we consider the optimal power schedul-
ing problem for this WSAN model in an inhomogeneous
sensing environment. To optimally allocate the resources
in the WSAN scenario, it is critical to consider not only
the importance of a single sensor measurement value to the
final actuation fidelity, but also the reliability of that mea-
surement and the energy required to communicate it to its
destination. These factors represent competing interests and
must all be considered jointly when determining the optimal
power allocation (i.e., fidelity) for each communication link
in the WSAN application. Inspired by recent work for power
scheduling in decentralized estimation [25], we propose and
solve the optimal power scheduling problem for this WSAN
model. The solution is based on an MQAM communications
scheme with a fixed bit-error rate for the wireless environ-
ment and a uniform quantization scheme for sensor measure-
ments with varying local SNRs. The resulting optimization
problem is relaxed to a convex program that can be solved
explicitly and evaluated numerically. We demonstrate its
effectiveness in significantly reducing the total power ex-
pended over uniform resource allocation schemes.

2. BACKGROUND
Neural reflex behaviors provide a starting place to think
about merging sensed information directly into action with
overlapping sensor and actuator elements. As an exam-
ple, we consider the crayfish dorsal light reflex [19] where
light movement in the visual field elicits predictable eyestalk
movement. The main visual representation is comprised of
a collection of sensory neurons which each represent the sum
of light activity in overlapping spatial regions. The crayfish
eyestalk movement is controlled by muscles that individually
generate movement in one specific direction. As with the
sensory units, the muscle movement directions also overlap
in the movement space (i.e., muscle movements are not “or-
thogonal”). Most importantly, the activity of each muscle is
determined directly from a processed combination of sensory

neuron activity with no centralized controller. Though all of
the muscles have to be coordinated to produce the desired
total action, their distributed individual responses are gen-
erated directly from the distributed sensory representation
and without a centralized decision-making structure. Pre-
vious research has shown that even in this critical behavior,
the contributions of each sensory unit to the total action are
simple and essentially linear [14].

The WSAN model presented in [24] follows the principles
seen in this example from the crayfish. In this model, a
collection of sensors measuring overlapping spatial regions
gather information about a stimulus field. A collection of
actuators have individual environmental effects that over-
lap and must be coordinated. Each actuator determines its
individual contribution to a behavioral goal through a com-
bination of the sensor measurements. The actuators do not
communicate directly with one another but their behavioral
decisions take into account what the other actuators in the
network will be doing. To analyze the performance of a
WSAN under different design decisions, we use mathemat-
ical models based on the familiar tools and terminology of
vector spaces.

2.1 Vector space sensor and actuator models
Sensor network models often begin with a collection of sen-
sors distributed over a 2-D spatial field limited to the spatial
domain Ω (e.g., Ω = [0, 1]2). Sensors are indexed by k ∈ K,
and are located either irregularly or on a regular grid. The
spatial region being sensed contains a stimulus field, denoted
by x(ω), where ω ∈ Ω indicates location in the field. Sensor
measurement models often consist of averaging the stimulus
field over non-overlapping spatial region surrounding each
sensor [21]. We generalize that notion by representing each
sensor by a receptive field sk(ω) over Ω that performs a
weighted average over a spatial region. The sensor recep-
tive field would be defined by the physics of the device and
could indicate sensors that are directional or have varying
sensitivity over a region. The receptive field sk(ω) may also
incorporate the physics of the environment surrounding the
sensor. For example, a sensor taking a measurement by av-
eraging readings over a time window may have a receptive
field corresponding to the spatial averaging induced by the
propagation properties of the surrounding medium, corre-
sponding to the Green’s function [4] for the physical process
being measured. In the agricultural irrigation scenario, a
soil moisture sensor measurement over a time window rep-
resents a spatial average of the true moisture that is defined
by the diffusion behavior [18] of the soil.

Ideal sensor measurements of the field are therefore given by

mk =

Z

Ω

x(ω)sk(ω)dω = 〈x, sk〉. (1)

We will not assume any particular arrangement or shape of
the sensor fields; in general we expect sensors to be irreg-
ularly spaced and have highly overlapping receptive fields.
This vector space view of the sensor measurements indicates
that the measurements can represent any stimulus signal in
the space Hx = span ({sk}). The space Hx represents a
restricted class of fields that is consistent with the resolu-
tion of the sensors. For example, Hx may be a space of
spatially bandlimited functions over Ω. The actual stim-



ulus field in the environment may not be in Hx, but the
sensors have a limited resolution (depending on design and
placement of the sensors) that precludes them from sensing
an unrestricted class of signals. Therefore, we assume that
x ∈ Hx, though in reality x only represents the component
of the true environmental field within the sensing resolution
of the network.

Just as individual sensors have local but overlapping regions
of sensitivity, actuator networks are composed of individual
actuators that each can affect the environment through (pos-
sibly overlapping) local regions of influence. Actuators are
indexed by l ∈ L, and again are located either irregularly
or on a regular grid. Whereas each sensor is represented
by a receptive field, each actuator is represented by a influ-
ence field over Ω, denoted by a function al(ω). As with the
sensor receptive fields, an actuator’s influence field depends
on the physics of the specific device and the surrounding
medium. In the agricultural irrigation example, the actua-
tor influence field may represent the water delivery pattern
of the sprinkler elements. Additionally, the influence field
function al(ω) may also incorporate the physics of the envi-
ronment, such as the water absorption or runoff rates of the
soil.

Each actuator responds with an intensity that indicates how
strongly it acts on the environment. We will model an ac-
tuator’s intensity dl as weighting its influence function. The
resulting total actuation field over Ω is

y =
X

l∈L

dlal.

The collection of actuators can therefore cause any actua-
tion field y in the space Hy = span ({al}). The space Hy

represents a restricted class of fields that is consistent with
the resolution and placement of the actuators (e.g., a class
of spatially bandlimited signals, etc.).

It is critical to note that the collection of sensors {sk} and
actuators {al} do not share many characteristics; they can
have different numbers of elements at different locations over
Ω. Most importantly, individual sensor and actuator func-
tions can have different shapes and even involve different
modalities (e.g., temperature sensors and water delivery ac-
tuators). Consequently, Hx and Hy can be very different
spaces of functions, and defining them in terms of general
vector spaces allows us to make connections between the
sensed inputs and the resulting actuated outputs.

In order to design effective communication strategies be-
tween sensors and actuators, we need methods to analyze the
relationship between individual node activity (mk and dl)
and the resulting impact to signals in Hx and Hy. The anal-
ysis is complicated because of the overlap between both in-
dividual sensor receptive fields and actuator influence fields;
in short, the representational elements are not orthogonal.
We appeal to the tools of frame theory to analyze systems
of linearly dependent elements that will apply to both the
collections of sensor and actuator functions.

2.2 Frame theory
The collections of sensor receptive fields and actuator influ-
ence functions form a representation for a signal space in the

environment (Hx and Hy, respectively). Though the overlap
among the sensors and actuators makes the situation more
complicated than with a familiar orthonormal basis (ONB),
we can still use familiar vector space methods to learn how
to deal with these collections of elements. In this section,
we will consider a general collection of vectors {φj} indexed
over J . Fundamental results about this generic collection of
overlapping vectors can then be applied to the sensor and
actuator representations.

In general, collections of sensor receptive fields and actua-
tor influence fields are not orthogonal and may be linearly
dependent. When a representation system has vectors that
are linearly dependent, the collection of vectors technically
no longer forms a basis. A collection of M vectors {φj} is
said to form a frame [3,10,12] for the space H if there exist
constants 0 < A ≤ B < ∞ such that Parseval’s relation is
bounded for any x ∈ H,

A ||x||2 ≤
X

j∈J

|〈φj , x〉|
2 ≤ B ||x||2 .

Because of the dependency present between frame vectors,
the same set of vectors cannot generally be used for both
analysis and synthesis,

x 6= Φ′Φx =
X

j∈J

〈x, φj〉φj .

Instead, a set of dual vectors are used for the reconstruction,

x =
X

j∈J

〈x, φj〉eφj .

While there are an infinite number of sets of dual vectors
that will work for reconstruction, the canonical dual set is
calculated to reduce the error due to corrupted coefficients
as much as possible (i.e., the dual vectors represent the pseu-

doinverse operation) [17]. The set of dual vectors {eφj} is also
a frame for H, with lower and upper frame bounds

`
1

B
, 1

A

´
,

respectively. Importantly, the roles of the frame and dual
set in the reconstruction equation are interchangeable,

x =
X

j∈J

〈φj , x〉eφj =
X

j∈J

〈eφj , x〉φj .

In an ONB, perturbing a measurement coefficient (including
removing it entirely) has a proportional impact on the re-
construction — the energy in the reconstruction error is the
same as the energy in the perturbation. The redundancy
present in a frame can provide a measure of robustness to
perturbations that is not present in orthonormal systems,
but it also makes the effect of such perturbations harder to
analyze. In [24], we show that when a perturbation pj is
added to each frame coefficient cj in the reconstruction,

x̂ =
X

j∈J

(cj + pj) eφj ,

the total error is bounded by the inverse of the lower frame
bound

||x − x̂||2 ≤

P
j∈J

p2
j

A
. (2)

In words, the perturbation energy is reduced in the recon-
struction by at least the minimum redundancy in the set of



frame analysis vectors {φj}. The upper bound in (2) is con-
sistent with probabilistic robustness results when stochastic
noise is added to frame coefficients [15].

2.3 WSAN actuation strategies
A specific WSAN application can be defined by its goal.
Given an environmental signal, the goal defines the optimal
actuated response. For example, in the agricultural irriga-
tion scenario the goal would be to keep the measured soil
moisture values close to a pre-determined set-point. In a
insect repellent application, the goal may be to deliver in-
secticides based on the measurements of temperature and
humidity sensors. For any measured stimulus field x, we
assume that there is a mapping T : Hx → Hy that defines
the ideal actuation field response, y = Tx. The mapping T

would be determined as a design specification for the WSAN
in advance, and we assume that it remains fixed over a dura-
tion between WSAN calibrations. Such a control law based
strictly on the current measurements obviously doesn’t en-
compass every interesting WSAN application (e.g., target
tracking and pursuit). However, such a control strategy does
cover a number of significant settings, and our analysis will
be limited to applications that fall into this class.

The mapping T may reflect either an open- or closed-loop
control scheme, depending on the nature of the application
and whether the actuator activity is reflected directly in
the sensors. In a closed loop scenario, the linear mapping
T is analogous to a proportional controller [13]. As one
specific example, assume that the user has specified a desired
environmental field x0 as a set point for the system. For
example, a farmer may specify the desired moisture levels
of a field containing several different types of crops. In this
case, we may want the current environmental field with the
addition of the actuated field to be equal to the set point,
x0 = x + y. One simple actuation strategy would to apply
the identity mapping (T = I) to the difference of the desired
and the actual environmental field, y = x0 − x.

Following our example of reflex behavior, actuators must
generate their own activity using measurements received
from the sensors and without communicating with the other
actuators. The overlapping influence fields of the actuators
prevent a purely greedy approach where each actuator gen-
erates the locally optimal activity. Nearby actuators could
be nearly identical and wildly overcompensate their actions
in a greedy approach. Sensors and actuators must together
have coordinated behavior that accounts for the components
of the action field that the other nodes must be covering.

To formalize this notion of coordination, we draw on our
discussion of frame theoretic models for sensors and actua-
tors in section 2.2. We assume that the collection of sensors
represented by {sk} form a frame for Hx with frame bounds
(As, Bs) and with dual functions given by {s̃k}. Similarly,
we assume that the collection of actuators represented by
{al} form a frame for Hy with frame bounds (Aa, Ba) and
with dual functions given by {ãl}.

Given a specified actuation function T and a current envi-
ronmental field x, the WSAN would like to generate actua-

tion coefficients {dl} such that:

y = Tx =
X

l∈L

dlal.

Drawing on frame theory, we show in [24] that the optimal
actuation coefficients can be generated from a weighted sum
of the sensor measurements

dl =
X

k∈K

wk,lmk, (3)

where wk,l = 〈ãl, T s̃k〉. Unfortunately, each ideal coefficient
dl is a sum including sensor measurements sk over all k ∈ K;
each individual actuator would require knowledge of every
sensor measurement in order to generate its own optimal
actuation intensity.

A scenario where every sensor in the network communicates
its measurement to every actuator would present an unrea-
sonable communication burden on the network — approx-
imately |K| · |L| communication paths would be necessary.
Because of sensor noise and the need to limit the communi-
cation costs, we will only be able to generate approximate
coefficients {d̂l} at each actuator, which will generate the
approximate actuation field ŷ. In [24] we showed that the
MSE in the actuated field is upper bounded by a term pro-
portional to the total MSE in the actuation coefficients,

||ŷ − y||2 ≤ Ba

X

l∈L

“
dl − d̂l

”2

.

However, it is intuitive to think that relative to an individ-
ual actuator’s behavior, some sensor measurements will be
more important than others. For example, a moisture sen-
sor spatially located a long distance away from the influence
field of a specific irrigation actuator will likely have very lit-
tle relevance on that actuator’s optimal behavior coefficient.
We also showed in [24] that the weights {wk,l} serve as an
importance value indicating how critical a given communica-
tions link is to the actuation fidelity. In numerical examples,
these relative weights served as a good indicator to which
wireless links can be eliminated to reduce communications
costs.

3. OPTIMAL POWER SCHEDULING
We will consider a set of k sensors, each recording the ideal
measurement corrupted by additive noise

m
s
k = mk + n

s
k = 〈x, sk〉 + n

s
k.

We assume that the sensor noise is zero mean with variance
E
ˆ
(ns

k)2
˜

= σ2
k, but the distribution is otherwise unknown.

Note that in general, the sensors can be inhomogeneous with
different local signal to noise ratios. We further assume that
the measurements lie in the range ms

k ∈ [−A, A]. Note also
that depending on the form of the actuation law, the sensor
may record the difference from a nominal value (or a set
point) instead of an absolute measurement. We will not
notate this explicitly because a mean shift is irrelevant to
the subsequent noise analysis.

The ideal actuation coefficient for the lth actuator is a
weighted combination of the ideal sensor measurements
(shown in equation (3)), where the weights {wk,l} are deter-
mined by the actuation strategy as described in section 2.
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Figure 1: A schematic of the communications path-
ways in the WSAN model. The kth sensor makes a
noisy reading ms

k. The quantized measurement mt
k,l

with Bk,l bits of precision is sent to the actuator lth

actuator. After incurring bit errors in the wireless
channel, the measurements mr

k,l are received by the
actuator and used to form the approximate actua-
tion coefficient d̂l.

However, each sensor must quantize its measurement and
send it with some finite precision along a noisy communica-
tions channel to each actuator. An inherent rate-distortion
tradeoff exists for a single actuator coefficient: higher fidelity
in the estimated actuator coefficient requires higher preci-
sion in the received measurements, but sending more bits
expends more energy. The optimal power scheduling prob-
lem results from realizing that not all sensor coefficients are
equally reliable or important to a given actuator, and the
variable distances among the nodes creates inhomogeneity
in the cost of each communication link. The fidelity of each
communicated message can be chosen through using a vari-
able number of bits (including zero) on each communication
path to optimally use the system resources. To set up the op-
timal power scheduling problem, we must have both a model
for the communications scheme that calculates the relative
transmission power needed to communicate each bit and a
model of the distortion that calculates the relative error re-
duction for each bit of precision.

3.1 Communication energy model
We first consider the transmission energy required to com-
municate the measurement ms

k from sensor k to actuator l.
Following the previous work of Cui, et. al [7,8] and Xiao, et.
al [25], we assume that sensors communicate to an actuator
over a wireless link using an MQAM strategy and following
a common multiple access scheme (e.g., TDMA). If sensor
k sends Bk,l bits of precision about its measurement to ac-
tuator l, the MQAM scheme will have a constellation with
2Bk,l symbols. We also assume an AWGN wireless channel,
and that the transmission scheme is designed with a fixed
bit error probability of p.

We expect that nodes using an MQAM scheme will incur
a transmission energy proportional to the number of sym-
bols being transmitted. In previous work [7,8,25], an upper

bound on the transmission energy is estimated to be

Pk,l ≤ κd
α
k,l

“
2Bk,l − 1

”
ln

„
2

p

«
,

where dk,l is the distance between the sensor and actuator, α

is the fading coefficient of the transmission medium, and κ is
a constant depending on several aspects of the communica-
tion environment (e.g., channel SNR, antenna gain, coding
gain, etc.). This expression applies for coded or uncoded
MQAM, though κ will change when error correcting codes
are used. We take κ to be a constant for all communication
links in the system and we estimate transmission power for
a measurement by the upper bound

Pk,l ∝ d
α
k,l

“
2Bk,l − 1

”
.

If the communications scenario is inhomogeneous, additional
link-dependent constants can be introduced without signif-
icant difficulty. While the constants being left out of this
expression are critical for determining the exact amount
of transmission energy required, they are not necessary for
comparing the relative effectiveness of two competing re-
source allocation strategies.

3.2 Communication distortion model
3.2.1 Quantization noise
Computation and communication systems must represent
measurements in terms of a finite precision bitstream. Ide-
ally, a real-valued measurement in the range ms

k ∈ [−A, A] is
represented by an infinitely long bitstream {bj}, bj ∈ {0, 1},

m
s
k = 2A

 
∞X

j=1

bj2
−j

!
− A.

The kth sensor quantizes its measurement for transmission
to the lth actuator by truncating this series at Bk,l bits. The
resulting quantization error thus creates an additive noise
term

m
t
k,l = m

s
k + n

q
k,l.

Assuming ms
k is uniformly distributed over [−A,A] and uni-

form quantization is employed, it is straightforward to cal-
culate the first two moments of the quantization noise

E
ˆ
n

q
k,l

˜
= 0, E

h`
n

q
k,l

´2i
=

(∆k,l)
2

12
=

A2

3
2−2Bk,l .

The uniform distribution of the measurements and the spe-
cific form of the quantizer are not critical for the setup of
the optimization problem established in section 3.3. If a
given application has a more appropriate model, the vari-
ance of that quantization noise can be used instead. Note
also that although the same measurement is being communi-
cated from sensor k to every actuator, the quantization noise
term is different for each of those transmissions. In fact,
some of those transmission link may use zero bits (i.e., no
transmission actually occurs) when the transmission would
be particularly costly relative to the benefit of transmitting
the measurement.

3.2.2 Transmission noise
Ideally the quantized measurement would reach the desti-
nation exactly as it was transmitted. However, communica-
tion with finite power on a wireless channel will inevitably



suffer errors. When sensor k transmits its quantized mea-
surement mt

k,l to actuator l, the received measurement is de-
noted mr

k,l. We can similarly denote the inaccuracy caused
by transmission errors as an additive noise term

m
r
k,l = m

t
k,l + n

t
k,l.

To send its quantized measurement to actuator l, sensor k

transmits the bit sequence {bj}
Bk,l

j=1 along a noisy channel.

The received bit sequence {br
j}

Bk,l

j=1 , br
j ∈ {0, 1} is a Bernoulli

random variable with the conditional distribution based on
the bit error rate

P
ˆ
b
r
j = bj |bj

˜
= 1 − p

P
ˆ
b
r
j = (bj ⊕ 1) |bj

˜
= p,

where ⊕ denotes modulo 2 addition.

A uniform distribution of ms
k over the dynamic range trans-

lates to an assumption that bj is a Bernoulli random variable
with probability 1/2. Consequently, the expectation of the
transmission noise also zero, E

ˆ
nt

k,l

˜
= 0. The variance of

the transmission noise can be calculated as:

E
h`

n
t
k,l

´2i
=

4pA2

3

“
1 − 2−2Bk,l

”

3.3 Optimal bit allocation
As mentioned earlier, the power scheduling problem is fun-
damentally a rate-distortion tradeoff. In one form of that
problem, we desire to meet a specified distortion criteria
while expending the minimal amount of transmission energy
across the WSAN. The vehicle for making this tradeoff is to
assign the bit allocations on each sensor-actuator link {Bk,l}
to make optimal use of the power resources. As in [25], we
will also minimize the `2 norm of the total power as a com-
promise measure between minimizing the total power (the
`1 norm) and the maximum power (the `∞ norm).

We consider for now a single actuator coefficient dl, which
is approximated at the actuator using the received measure-
ments

d̂l =
X

k∈K

wk,lm
r
k,l =

X

k∈K

wk,l (mk + nk,l) ,

where nk,l = ns
k + n

q
k,l + nt

k,l represents the total distor-
tion from the ideal sensor measurement. As stated earlier,
the results from [24] indicate that reducing the error in the
actuator coefficients causes a proportional decrease in the
upper bound of the error on the actuation field. Therefore,
we will consider only the fidelity of a single actuation co-
efficient here, which can be used to bound the fidelity of
the total actuation field. If desired, the resource allocation
problem outlined here can be applied jointly to all of the
actuator coefficients.

Making the typical assumption that the noise sources due to
the sensor, quantization and bit errors are independent, we
calculate the variance of the total noise source as the sum
of the component variances

E
ˆ
(nk,l)

2
˜

= σ
2
k,l

= σ
2
k +

A2

3
2−2Bk,l +

4pA2

3

“
1 − 2−2Bk,l

”
. (4)

Accounting for the multiplication of the weights necessary
to calculate the actuation coefficient, the variance of d̂l is
given by

E

»“
dl − d̂l

”2
–

=
X

k∈K

w
2
k,lσ

2
k,l

This distortion model clearly has some limitations. It is
likely that the noise terms will not be completely indepen-
dent, especially at very low bit rates. We will see in a simula-
tion described later that the independence assumption does
not have a large effect on the results for distortion ranges
of interest. Also, the sensor noise is included in the dis-
tortion calculation even when no bits are used on the com-
munication link and the measurement is not communicated
at all. We will also see that this inaccuracy in the model
does not have a large effect as long as the sensor noise is
small compared to the dynamic range of the sensor so it is
overwhelmed by the quantization error in the low bit-rate
regime.

For individual actuator coefficients, the optimal resource al-
location problem is expressed as an optimization of the bi-
trates {Bk,l} over the field X = Z+ subject to a distortion
constraint of D0,

min
Bk,l∈X

X

k∈K

P
2
k,l

s.t. E

»“
dl − d̂l

”2
–
≤ D0.

Writing this optimization problem in terms of the energy
and variance terms calculated from the communication and
distortion models described above, the optimal resources al-
location problem is fully stated as

min
Bk,l∈X

X

k∈K

d
2α
k,l

“
2Bk,l − 1

”2

s.t.
X

k∈K

w
2
k,l

„
σ

2
k +

A2

3

“
4p + (1 − 4p) 2−2Bk,l

”«
≤ D0

This optimization is an integer program, whose solutions are
are generally NP-hard. As in [25], we relax the space of the
optimization problem to be X = R+, where we obtain a
convex program for which we can write an explicit solution.
This relaxed problem will no longer provide an optimal so-
lution, but by converting the optimal real-valued answers
into integer values we will see that even introducing this
suboptimality still allows for significant relative gains over
uniform bit allocation methods. Using the ceiling function
for this conversion ensures that the targeted distortion crite-
ria D0 is still met. However, using a less stringent rounding
function may produce a better rate-distortion tradeoff curve
even though the individual distortion criteria are not guar-
anteed to be met. In particular, using a rounding instead
of a ceiling function generates many more links using zero
bits, thereby possibly saving the overhead energy needed to
power up the communications circuits on the sensor.

We use Lagrangian methods to solve this optimization for
Bk,l ∈ R. Making the substitution yk,l = 2Bk,l for nota-
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Figure 2: An example WSAN for a stylized agri-
cultural irrigation application. A field 100m on
each edge has three crops with varying desired soil
moisture percentages. A collection of moisture sen-
sors (bottom left) and irrigation actuators (bottom
right) are deployed, with a single contour denoting
where the influence field has mostly vanished.

tional convenience, the Lagrangian function is

L =
X

k∈K

d
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k,l (yk,l − 1)2
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where λ is the Lagrange multiplier constant. Differentiating
L with respect to yk,l and setting it equal to zero we see that
the optimal values of yk,l are those that meet the constraints
and are a solution of the quartic equation

y
3
k,l (yk,l − 1) − λ

 
w2

k,lA
2 (1 − 4p)

3d2α
k,l

!
= 0.

While analytic solutions to the quartic equation are cumber-
some, numerical methods can easily solve this equation for
specific numeric values. There are four roots to this quar-
tic equation, only one of which is real and positive so as
to be a viable solution to our optimization problem. More-
over, we find that the real and positive solutions for yk,l

are strictly increasing in λ, which suggests an optimiza-
tion strategy similar to the well-known water-filling solution
problem for multi-channel communications [5]. We can in-
crease λ to increase the number of bits allocated to each
channel until the distortion criteria D0 is met with equality.
We see that communication links with measurements more
critical to the actuation coefficient (measured by w2

k,l) will
be assigned bits more quickly, and communication links ex-
pending more transmission energy (measured by d2α

k,l) will
be penalized and assigned bits more slowly.

4. NUMERICAL RESULTS
To demonstrate the utility of the power scheduling problem
described in section 3.3, we examine a stylized WSAN setup
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Figure 3: The rate-distortion curve comparing MSE
estimation error for a single actuation coefficient dl

and the total network power needed to achieve that
distortion are shown in the top plot. The bit allo-
cations resulting from the optimal power scheduling
algorithm achieve the same distortion using signifi-
cantly less total power than a uniform bit allocation
strategy. The bottom plot indicates the distribution
of bits on each communication link. Each pane cor-
responds to the distortion equivalent of a uniform
bit allocation scheme. The bars indicate the frac-
tion of links using that number of bits.

for agricultural irrigation. Figure 2 denotes the location of
different crops with varying optimal soil moisture needs, as
well as the location of 68 moisture sensors and 38 irrigation
actuators within a 100m square field. The sensor receptive
fields are modeled by a circular Gaussian function, corre-
sponding to the Green’s function for homogeneous diffusion
medium with infinite boundaries [4]. The actuator influence
fields are modeled by an elliptic Gaussian function, repre-
senting a shaped water delivery pattern. Denoting the ideal
moisture levels depicted in figure 2 as x0, the ideal sen-
sor measurements are relative to the nominal measurement,
mk = 〈x0, sk〉 − 〈x, sk〉. One choice of actuation function to
try and achieve the set point is identity T = I, making the
weights wk,l = 〈ãl, s̃k〉. We use simulation parameters of
α = 3.5 and p = 10−3. To focus on the noise aspect related
to bit allocation, we also assume a common sensor SNR of
σ2

k = 10−4 for all k.
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Figure 4: The rate-distortion curves calculated
through simulated measurements. Measurements
were simulated directly through independent ran-
dom generation. Correlated measurements were
also simulated by generating random environmen-
tal fields from a piecewise linear class and taking
the resulting sensor measurements.

Focusing on a specific actuator coefficient dl, we first ex-
amine the theoretical improvement of the power scheduling
algorithm 3.3 over a uniform bit allocation scheme. Figure 3
shows the rate distortion curve produced for the expected

MSE E

»“
dl − d̂l

”2
–

when each link from a sensor to the

lth actuator used the same number of bits. For compari-
son, the optimal power scheduling algorithm of 3.3 was run
to find optimal bit allocations and the resulting calculated
rate-distortion curve is also shown in figure 3. We note that
the bit allocation algorithm is able to reduce the network
power consumption by several orders of magnitude for the
same distortion over a uniform bit allocation strategy. The
rate-distortion curves shown are averages over all actuator
coefficients in the example setup. Figure 3 also indicates the
distribution of bit assignments in the optimal power alloca-
tion scheme. Each pane corresponds to a distortion equiv-
alent to a uniform bit allocation scheme, with the bars de-
noting the fraction of sensor-actuator communication links
using that number of bits. The distribution of bit alloca-
tion levels across a range of values both above and below
the corresponding uniform allocation indicates that power
savings are being achieved not only through a reduction of
bits but also through allocating those bits to the communi-
cation links that are the best combination of important and
reliable. Also note that several links are allocated zero bits,
meaning that no communication occurs over this link.

To verify our noise distortion model and the calculated rate-
distortion curves shown above, we simulated the calculation
of actuation coefficients from random measurements in the
WSAN example application. Figure 4 shows the rate dis-
tortion curves calculated when independent random mea-
surements were generated and used to calculate actuation
coefficients (after adding sensor noise, quantizing, and sim-

ulating transmission errors). We see that the rate-distortion
curves are essentially the same as those theoretically calcu-
lated and shown in figure 3. To explore the effect of sen-
sor correlation on our distortion estimate, we performed the
same experiment when the measurements are correlated. In
this experiment we generating random environmental fields
from a class of piecewise linear functions. The resulting cor-
related measurements were used to calculate the actuator
coefficients in the same manner and the rate-distortion re-
sults are also shown. We see that these correlations do not
play a significant effect on the distortions calculated from
the theoretical model.

5. CONCLUSIONS AND FUTURE WORK
WSANs present an exciting opportunity to realize truly dis-
tributed in-network processing. The coordination among
overlapping sensor and actuator nodes without a centralized
controller presents, however, a daunting challenge. We have
shown here that part of this coordination can be achieved
through the optimal power scheduling algorithm problem.
The solution of this convex optimization yields a resource
allocation strategy that greatly reduces the network’s power
demands compared to a uniform resource allocation. While
this optimization involves centralized information and pro-
cessing, the nodes operate independently once they are given
their optimal bit allocations for each communications link.
The optimization strategy can therefore be done off-line and
updated with a simple transmission to each sensor whenever
the nodes are recalibrated. In this way, the necessary coor-
dination is built into the pre-calculation and no centralized
controller is needed to implement the control strategy.

There are many open areas for future work in WSAN infor-
mation management. Our treatment of the optimal power
scheduling problem assumed a simple network topology
where every node can communicate wirelessly to every actu-
ator. Our optimal power allocation scheme results in many
of these communication paths not being used (i.e., they are
allocated zero bits), meaning that in operation the sensor
and actuator fields would not be fully connected. However,
the optimization based on the assumption that each sensor
node could have directly communicated with each actuator
is clearly unrealistic when the spatial extent of the WSAN
is large and multiple hops would be needed to make a con-
nection between two nodes. Future work will be needed to
incorporate these more complicated network topologies.

We envision several direct extensions to optimal power
scheduling problem addressed in this paper. Recent re-
search shows that altering the bit-interval durations to cre-
ate lower bit error rates for the most significant bits can
result in reduced error of the received measurement [16].
Also, in our previous work [24], we showed that sensors
could also adaptively make decisions about communicating
on each link based on their current measurement values. It
may be beneficial to explore a hybrid strategy between these
two approaches where the resource allocation is a combina-
tion of off-line computations and adaptive decision making.
WSAN information processing strategies may also benefit
from recent work and analysis in cooperative MIMO com-
munications [6, 22] and distributed estimation using analog
communication [9]. Finally, WSAN research will critically
depend on methods for determining actuation laws based on



physical environmental models and optimal control theory.
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