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Abstract

Theoretical analysis of randomized, compressive operators often depends on a concentration of measure inequality forthe

operator in question. Typically, such inequalities quantify the likelihood that a random matrix will preserve the normof a signal

after multiplication. Concentration of measure results are well-established for unstructured compressive matrices, populated with

independent and identically distributed (i.i.d.) random entries. Many real-world acquisition systems, however, aresubject to

architectural constraints that make such matrices impractical. In this paper we derive concentration of measure bounds for two

types of block diagonal compressive matrices, one in which the blocks along the main diagonal are random and independent,

and one in which the blocks are random but equal. For both types of matrices, we show that the likelihood of norm preservation

depends on certain properties of the signal being measured,but that for the best case signals, both types of block diagonal

matrices can offer concentration performance on par with their unstructured, i.i.d. counterparts. We support our theoretical results

with illustrative simulations as well as analytical and empirical investigations of several signal classes that are highly amenable

to measurement using block diagonal matrices. We also discuss applications of these results in ensuring stable embeddings for

various signal families and in establishing performance guarantees for solving various signal processing tasks (suchas detection

and classification) directly in the compressed domain.

I. I NTRODUCTION

Recent technological advances have enabled the sensing andstorage of massive volumes of data from a dizzying array of

sources. While access to such data has revolutionized fieldssuch as signal processing, the limits of some computing and storage

resources are being tested, and front-end signal acquisition devices are not always able to support the desire to measure in

increasingly finer detail. To confront these challenges, many signal processing researchers have begun investigatingcompressive

linear operatorsΦ : RN → R
M for high resolution signalsx ∈ R

N (M < N ), either as a method for simple dimensionality

reduction or as a model for novel data acquisition devices [3, 4]. Because of their universality and amenability to analysis,

randomized compressive linear operators (i.e., random matrices withM < N ) have drawn particular interest.

The theoretical analysis of random matrices often relies onthe general notions that these matrices are well-behaved most of

the time and that we can bound the probability with which theyperform poorly. Frequently, these notions are formalized using

some form of theconcentration of measure phenomenon[5], a powerful characterization of the tendency of certainfunctions of
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high-dimensional random processes to concentrate sharplyaround their mean. As one important example of this phenomenon,

it is known that for any fixed signalx ∈ R
N , if Φ is anM ×N matrix populated with independent and identically distributed

(i.i.d.) random entries drawn from a suitable distribution, then with high probabilityΦ will approximately preserve the norm

of x. More precisely, for many random distributions forΦ, the probability that
∣∣‖Φx‖22 − ‖x‖22

∣∣ will exceed a small fraction

of ‖x‖22 decays exponentially in the number of measurementsM .

As we discuss in Section II of this paper, such concentrationresults have a number of favorable implications. Among

these is the Johnson-Lindenstrauss (JL) lemma [6–8], whichstates that when applied to a finite set of pointsQ ⊂ RN , a

randomized compressive operatorΦ can provide a stable, distance preserving embedding ofQ in the measurement space

RM . This enables the efficient solution of a broad variety of signal processing problems by permitting these problems to be

solved in the low-dimensional observation space (such as finding the nearest neighbor to a pointx in a databaseQ). Such

concentration results have also been used to prove that certain families of random matrices can satisfy the Restricted Isometry

Property (RIP) [9–11], which concerns the stable, distancepreserving embedding of families of sparse signals. In the field

of Compressive Sensing (CS), the RIP is commonly used as a sufficient condition to guarantee that a sparse signalx can be

recovered from the measurementsΦx.

Despite the utility of norm preservation in dimensionalityreduction, concentration analysis to date has focused almost

exclusively on dense matrices that require each measurement to be a weighted linear combination of all entries ofx. Dense

random matrices are often either impractical because of theresources required to store and work with a large unstructured

matrix (e.g., one with i.i.d. entries), or unrealistic as models of acquisition devices with architectural constraints preventing such

global data aggregation. For example, in a distributed sensing system, communication constraints may limit the dependence of

each measurement to only a subset of the data. For a second example, applications involving streaming signals [12, 13] often

have datarates that necessitate operating on local signal blocks rather than the entire signal simultaneously.

In such scenarios, the data may be divided naturally into discrete subsections (or blocks), with each block acquired viaa

local measurement operator. To see the implications of this, let us model a signalx ∈ RNJ as being partitioned intoJ blocks

x1, x2, . . . , xJ ∈ RN , and for eachj ∈ {1, 2, . . . , J}, suppose that a local measurement operatorΦj : R
N → RMj collects the

measurementsyj = Φjxj . Concatenating all of the measurements into a vectory ∈ R

∑
jMj , we then have




y1

y2
...

yJ




︸ ︷︷ ︸
y: (

∑
j
Mj)×1

=




Φ1

Φ2

. . .

ΦJ




︸ ︷︷ ︸
Φ: (

∑
j
Mj)×NJ




x1

x2

...

xJ




.

︸ ︷︷ ︸
x:NJ×1

(1)

In cases such as these, we see that the overall measurement operatorΦ will have a characteristic block diagonal structure.

In some scenarios, the local measurement operatorΦj may be unique for each block, and we say that the resultingΦ has a

Distinct Block Diagonal(DBD) structure. In other scenarios it may be appropriate ornecessary to repeat a single operator

across all blocks (such thatΦ1 = Φ2 = · · · = ΦJ ); we call the resultingΦ a Repeated Block Diagonal(RBD) matrix.
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Starting from this block diagonal matrix structure, the main contributions of this paper are a derivation of concentration

of measure bounds for DBD and RBD matrices and an extensive exploration of the implications and utility of these bounds

for the signal processing community. Specifically, in Section III we derive concentration of measure bounds both for DBD

matrices populated with i.i.d. subgaussian1 random variables and for RBD matrices populated with i.i.d.Gaussian random

variables. In contrast to the signal agnostic concentration of measure bounds for i.i.d. dense matrices, these bounds are signal

dependent; in particular, the probability of concentration depends on the “diversity” of the component signalsx1, x2, . . . , xJ

being well-matched to the measurement matrix (we make this precise in Section III). As our analytic discussion and supporting

simulations show, these measures of diversity have clear intuitive interpretations and indicate that, for signals with the most

favorable characteristics, the concentration of measure probability for block diagonal matrices can scale exactly asfor an i.i.d.

dense random matrix.

Sections IV and V are devoted to a detailed investigation of the utility of these non-uniform concentration results for signal

processing practitioners. Specifically, in Section IV, we extend our concentration results to formulate a modified version of the

JL lemma appropriate for block diagonal matrices. We also explain how this lemma can be used to guarantee the performance

of various compressive-domain signal inference and processing algorithms such as signal detection and estimation. Given the

applicability of these results for providing performance guarantees in these tasks, a natural question is whether there are large

classes of signals that have the diversity required to make block diagonal matrices perform well. In Section V we provide

several examples of signal families that are particularly favorable for measurement via DBD or RBD matrices.

II. BACKGROUND AND RELATED WORK

In this section, we begin with a definition of subgaussian random variables, describe more formally several existing

concentration of measure results for random matrices, and review some standard applications of these results in the literature.

A. Subgaussian Random Variables

In fields such as CS, the Gaussian distribution is often invoked for probabilistic analysis thanks to its many convenientprop-

erties. Gaussian random variables, however, are just one special case in a much broader class ofsubgaussiandistributions [14,

15]. Where possible, we state our results in terms of subgaussian random variables, which are defined below using standard

notation from the literature.

Definition II.1. [15] A random variableW is subgaussian if∃a > 0 such that

(E|W |p)1/p ≤ a
√
p for all p ≥ 1.

The quantity‖W‖ψ2
:= supp≥1 p

−1/2(E|W |p)1/p is known as the subgaussian norm ofW .

We restrict our attention to zero-mean subgaussian random variables in this paper. Examples of such random variables

include zero-mean Gaussian random variables,±1 Bernoulli random variables (each value with probability1
2 ), and uniform

random variables on[−1, 1].
1Subgaussian random variables [14, 15] are precisely definedin Section II-A, and can be thought of as random variables from a distribution with tails that

can be bounded by a Gaussian.
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For a given subgaussian random variableW , the varianceVar(W ) is a constant multiple of‖W‖2ψ2
with 0 ≤ Var(W )

‖W‖2

ψ2

≤
√
2;

the exact value ofVar(W )
‖W‖2

ψ2

depends on the specific distribution forW under consideration (Gaussian, Bernoulli, etc.). We also

note that in some cases, we will consider independent realizations of a subgaussian random variableW that are normalized to

have different variances. However, it is useful to note thatfor any scalarα > 0, Var(αW )
‖αW‖2

ψ2

= α2Var(W )
α2‖W‖2

ψ2

= Var(W )
‖W‖2

ψ2

.

B. Concentration Inequalities

Concentration analysis to date has focused almost exclusively on dense random matrices populated with i.i.d. entries drawn

from some distribution. Commonly, whenΦ has sizeM×N and the entries are drawn from a suitably normalized distribution,

then for any fixed signalx ∈ RN the goal is to prove for anyǫ ∈ (0, 1) that

P (
∣∣‖Φx‖22 − ‖x‖22

∣∣ > ǫ‖x‖22) ≤ 2e−Mc0(ǫ), (2)

wherec0(ǫ) is some constant (depending onǫ) that is typically on the order ofǫ2. When discussing bounds such as (2) where

the probability of failure scales ase−X , we refer toX as theconcentration exponent.

The past several years have witnessed the derivation of concentration results for a variety of (ultimately related) random

distributions forΦ. A uniform concentration result of the form (2) was originally derived for dense Gaussian matrices populated

with entries having mean zero and variance1M [16]; one straightforward derivation of this uses standardtail bounds for chi-

squared random variables [7]. Using slightly more complicated arguments, similar concentration results were then derived

for Bernoulli matrices populated with random±1√
M

entries (each with probability12 ) and for a “database-friendly” variant

populated with random{ 3√
M
, 0,− 3√

M
} entries (with probabilities{ 16 , 23 , 1

6}) [7]. Each of these distributions, however, is itself

subgaussian, and more recently it has been shown that uniform concentration results of the form (2) in fact holds forall

subgaussian distributions having variance1
M [11, 17].2 Moreover, it has been shown that a subgaussian distributionis actually

necessary for deriving a uniform concentration result of the form (2) for a dense random matrix populated with i.i.d. entries [17].

Concentration inequalities have also been derived in the literature for certain structured (non-i.i.d.) dense randommatrices.

Examples include matrices populated with random orthogonal rows [18] or matrices constructed by combining a structured

matrix with certain random operations [19]. A concentration bound also holds for the randomized RIP matrices [20, 21] that

we discuss in the final paragraph of Section II-C below.

C. Applications of Concentration Inequalities

While nominally a concentration result of the form (2) appears to guarantee only that the norm of a particular signalx is

preserved in the measurementsΦx, in fact such a result can be used to guarantee that the information required to discriminate

x from other signalsmay actually be preserved inΦx. Indeed, one of the prototypical applications of a concentration result

of the form (2) is to prove that with high probability,Φ will preserve distances between various signals of interest.

Definition II.2. Consider two setsU, V ⊂ RN . We say that a mappingΦ provides astable embedding of(U, V ) with

2This fact also follows from our Theorem III.1 by consideringthe special case whereJ = 1.



5

conditioningδ if

(1− δ)‖u− v‖22 ≤ ‖Φ(u− v)‖22 ≤ (1 + δ)‖u− v‖22 (3)

holds for all u ∈ U and v ∈ V .

To relate this concept to norm preservation, note that for a fixedx ∈ RN , a randomized operator that satisfies (2) will, with

high probability, provide a stable embedding of({x}, {0}) with conditioningǫ. As we discuss in Section IV, this fact is useful

for studying the performance of a compressive-domain signal detector [22].

However, much richer embeddings may also be considered. Forexample, suppose that a signal family of interestQ ⊂ RN

consists of a finite number of points. If a randomized operator Φ satisfies (2) for each vector of the formu− v for u, v ∈ Q,

then it follows from a simple union bound that with probability at least1− 2|Q|2e−Mc0(ǫ), Φ will provide a stable embedding

of (Q,Q) with conditioningǫ. From this fact one obtains the familiar JL lemma [6–8], which states that this stable embedding

will occur with high probability ifM = O
(

log(|Q|)
c0(ǫ)

)
. Thus, the information required to discriminate between signals inQ

is preserved in the compressive measurements. This fact is useful for studying the performance of a compressive-domain

nearest-neighbor search [16], a compressive-domain signal classifier [22], and various other signal inference strategies that we

discuss in Section IV.

In certain cases (particularly when dealing with randomized operators that satisfy (2) uniformly over all signalsx ∈ RN ),

it is possible to significantly extend embedding results farbeyond the JL lemma. For example, for a setQ consisting of

all signals with sparsityK in some basis forRN , one can couple the above union bound approach with some elementary

covering arguments [10, 11] to show that ifM = O (K log(N/K)), thenΦ will provide a stable embedding of(Q,Q) with

high probability. This guarantee is known as the RIP in CS, and from the RIP, one can derive deterministic bounds on the

performance of CS recovery algorithms such asℓ1 minimization [23]. Concentration of measure type results have also been

used to prove the RIP for random matrices with subexponential columns [24], and a concentration result of the form (2)

has also been used to probabilistically analyze the performance ofℓ1 minimization [17]. Finally, we note that one can also

generalize sparsity-based embedding arguments to the casewhereQ is a low-dimensional submanifold ofRN [25].

In a different direction of interest regarding stable embeddings of finite collections of points, we note that several authors

have also recently shown that the direction of implication between the JL lemma and the RIP can be reversed. Specifically,

it has been shown [20, 21] that randomizing the column signs of a matrix that satisfies the RIP results in a matrix that also

satisfies the JL lemma. One of the implications of this is thata computationally efficient stable embedding can be achieved

by randomizing the column signs of a partial Fourier matrix [26–28].

III. N ON-UNIFORM CONCENTRATION OFMEASURE INEQUALITIES

In this section we state our concentration of measure results for Distinct Block Diagonal (DBD) and Repeated Block

Diagonal (RBD) matrices. For each type of matrix we provide adetailed examination of the derived concentration rates and

use simulations to demonstrate that our results do indeed capture the salient signal characteristics that affect the concentration

probability. We also discuss connections between the concentration probabilities for the two matrix types.
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A. Distinct Block Diagonal (DBD) Matrices

1) Analytical Results:Before stating our first result, we define the requisite notation. For a given signalx ∈ RNJ partitioned

into J blocks of lengthN as in (1), we define a vector describing the energy distribution across the blocks ofx: γ = γ(x) :=
[
‖x1‖22 ‖x2‖22 · · · ‖xJ‖22

]T ∈ RJ . Also, lettingM1,M2, . . . ,MJ denote the number of measurements to be taken of each

block, we define aJ×J diagonal matrix containing these numbers along the diagonal: M := diag(M1,M2, . . . ,MJ). Finally,

for a given signalx ∈ RNJ and measurement allocationM, we define the quantities

Γ2(x,M) :=
‖γ‖21

‖M−1/2γ‖22
=

(∑J
j=1 ‖xj‖22

)2

∑J
j=1

‖xj‖4

2

Mj

and Γ∞(x,M) :=
‖γ‖1

‖M−1γ‖∞
=

∑J
j=1 ‖xj‖22

maxj
‖xj‖2

2

Mj

. (4)

Using this notation, our first result concerning the concentration of DBD matrices is captured in the following theorem.

Theorem III.1. Supposex ∈ RNJ , and for eachj ∈ {1, 2, . . . , J} suppose thatMj > 0. Letφ denote a subgaussian random

variable with mean0, variance1, and subgaussian norm‖φ‖ψ2
. Let{Φj}Jj=1 be random matrices drawn independently, where

eachΦj has sizeMj ×N and is populated with i.i.d. realizations of the renormalized random variable φ√
Mj

, and letΦ be a
(∑J

j=1 Mj

)
×NJ DBD matrix composed of{Φj}Jj=1 as in (1). Then

P (
∣∣‖Φx‖22 − ‖x‖22

∣∣ > ǫ‖x‖22) ≤ 2 exp

{
−C1 min

(
C2

2 ǫ
2

‖φ‖4ψ2

Γ2(x,M),
C2ǫ

‖φ‖2ψ2

Γ∞(x,M)

)}
, (5)

whereC1 andC2 are absolute constants.

Proof: See Appendix A.

From the tail bound (5), it is easy to deduce that the concentration probability of interest decays exponentially as a function

of ǫ2Γ2(x,M) in the case where0 ≤ ǫ ≤ ‖φ‖2

ψ2
Γ∞(x,M)

C2Γ2(x,M) and exponentially as a function ofǫΓ∞(x,M) in the case where

ǫ >
‖φ‖2

ψ2
Γ∞(x,M)

C2Γ2(x,M) . One striking thing about Theorem III.1 is that, in contrastto analogous concentration of measure results

for dense matrices with i.i.d. subgaussian entries,3 the concentration rate depends explicitly on the signalx being measured.

To elaborate on this point, since we are frequently concerned in practice with applications whereǫ is small, let us focus on

the first case of (5), when the concentration exponent scaleswith Γ2(x,M). In this case, we see that larger values ofΓ2(x,M)

promote sharper concentration of‖Φx‖22 about its mean‖x‖22. Using elementary inequalities relating theℓ1 and ℓ2 norms,

one can bound the range of possibleΓ2 values byminj Mj ≤ Γ2(x,M) ≤∑J
j=1 Mj. The worst case,Γ2(x,M) = minj Mj,

is achieved when all of the signal energy is concentrated into exactly one signal block where the fewest measurements are

collected, i.e., when‖xj‖22 = 0 except for a single indexj′ ∈ {argminj Mj} (where{argminj Mj} is the set of indices where

{Mj} is minimum). In this case the DBD matrix exhibits significantly worse performance than a dense i.i.d. matrix of the

same size (
∑J

j=1 Mj)×NJ , for which the concentration exponent would scale with
∑J

j=1 Mj . This makes intuitive sense, as

this extreme case would correspond to only one block of the DBD matrix sensing all of the signal energy. On the other hand,

the best case,Γ2(x,M) =
∑J

j=1 Mj, is achieved when the number of measurements collected for each block is proportional

to the signal energy in that block. In other words, lettingdiag(M) represent the diagonal ofM, whendiag(M) ∝ γ (i.e.,

3The uniformity of such concentration results comes not fromthe fact that these matrices are dense but rather that that are populated with i.i.d. random
variables; certain structured dense random matrices (suchas partial Fourier matrices) could have signal-dependent concentration inequalities.
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whendiag(M) = Cγ for some constantC > 0) the concentration exponent scales with
∑J

j=1 Mj just as it would for a dense

i.i.d. matrix of the same size. This is in spite of the fact that the DBD matrix has many fewer nonzero elements.

The probability of concentration behaves similarly in the second case of (5), where the concentration exponent scales with

Γ∞(x,M). One can bound the range of possibleΓ∞ values byminj Mj ≤ Γ∞(x,M) ≤ ∑J
j=1 Mj . The lower bound is

again achieved when‖xj‖22 = 0 except for a single indexj′ ∈ {argminj Mj}, and the upper bound again is achieved when

diag(M) ∝ γ.

The above discussion makes clear that the concentration performance of a DBD matrix can vary widely depending on the

signal being measured. In particular, DBD matrices can perform as well as dense i.i.d. matrices if their measurement allocation

is well matched to the energy distribution of the signal. Such a favorable event can occur either (i) by design, if a system

designer has some operational knowledge of the energy distributions to expect, or (ii) by good fortune, if favorable signals

happen to arrive that are well matched to a fixed system design. We note that even in the former situation when the general

energy distribution across blocks is known, this does not imply that the designer has a priori knowledge of the signal being

sensed. Furthermore, even when significant information about the signal (or a finite class of signals) is known, there may

still be much to learn by actually measuring the signal. For example, Section IV outlines several interesting signal inference

problems that benefit from a norm-preservation guarantee for a known signal (or finite signal family). Also, in the secondof

these situations, it may not be unreasonable to expect that afixed measurement allocation will be well matched to an unknown

signal most of the time. For example, in Section V we describeseveral realistic signal classes that are favorably matched to

fixed systems that have equal measurement allocations (M1 = M2 = · · · = MJ ).

Two final comments are in order. First, while Theorem III.1 was derived by considering all signal blocks to be of equal

lengthN , one can see by a close examination of the proof that the same theorem in fact holds for signals partitioned into

blocks of unequal lengths. Second, it is instructive to characterize the range ofǫ for which the two cases of Theorem III.1 are

relevant; we do so in the following lemma, which can be provedusing standard manipulations of theℓ1, ℓ2, andℓ∞ norms.

Lemma III.1. If J ≥ 2, the point of demarcation between the two cases of Theorem III.1 obeys

‖φ‖2ψ2
· 2(
√
J − 1)

C2(J − 1)

minj
√
Mj

maxj
√
Mj

≤
‖φ‖2ψ2

Γ∞(x,M)

C2Γ2(x,M)
≤
‖φ‖2ψ2

C2
.

Examining the bound above, we note that forJ ≥ 2 it holds that 2(
√
J−1)

J−1 ≥ 1√
J

. Thus, as an example, whenM1 = M2 =

· · · = MJ , the first (“smallǫ”) case of Theorem III.1 is guaranteed to at least permitǫ ∈
[
0,

‖φ‖2

ψ2

C2

√
J

]
. We note further that

when the measurement matrix is well-matched to the signal characteristics, the first case of Theorem III.1 permitsǫ as large

as
‖φ‖2

ψ2

C2

, which is independent ofJ .

2) Supporting Experiments:While the quantityΓ2(x,M) plays a critical role in our analytical tail bound (5), it is reasonable

to ask whether this quantity actually plays a central role inthe empirical concentration performance of DBD matrices. We

explore this question with a series of simulations. To begin, we randomly construct a signal of length1024 partitioned into

J = 16 blocks of lengthN = 64. The energy distributionγ of the signalx is plotted in Figure 1(a) (and the signalx itself

is plotted in the top right corner). For this simulation, to ensurediag(M) ∝ γ with integer values for theMj , we begin by
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(a) (b) (c)

Fig. 1. (a) Test signal for concentration in a DBD matrix. The main panel plots the energy distributionγ when the signal is partitioned into
J = 16 blocks of lengthN = 64; the subpanel plots the length-1024 signalx itself. (b),(c) Test signals for concentration in a RBD matrix. The
main panels plot the eigenvalue distributionsλ for Sig. 1 and Sig. 2, respectively, when partitioned intoJ = 16 blocks of lengthN = 64; the
subpanels plot the length-1024 signals themselves.
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(b)
Fig. 2. Comparisons of concentration behavior for various matrix and signal types; each figure shows the percentage of trials for which
(1 − ǫ) ≤ ‖Φx‖2/‖x‖2 ≤ (1 + ǫ) as a function ofǫ. (a) Performance of the dense and DBD matrices on the signal shown in Figure 1(a).
(b) Performance of the dense and RBD matrices on the signals shown in Figure 1(b),(c).

constructingM (populated with integers) and then normalize each block of arandomly generated signal to setγ accordingly.

Fixing this signalx, we generate a series of10000 random64×1024 matricesΦ using zero-mean Gaussian random variables

for the entries. In one case, the matrices are fully dense andthe entries of each matrix have variance1/64. In another case, the

matrices are DBD withdiag(M) ∝ γ and the entries in each block have variance1/Mj. Thus, we haveΓ2(x,M) =
∑J

j=1 Mj

and our Theorem III.1 gives the same concentration bound forthis DBD matrix as for the dense i.i.d. matrix of the same size.

For each type of matrix, Figure 2(a) shows the percentage of trials for which (1− ǫ) ≤ ‖Φx‖2/‖x‖2 ≤ (1 + ǫ) as a function

of ǫ, and indeed, the curves for the dense and DBD matrices are indistinguishable.

Finally, we consider a third scenario in which we construct 10000 random64×1024 DBD matrices as above but with an equal

number of measurements in each block. In other words, we set all Mj = 4, and obtain measurement matrices that are no longer

matched to the signal energy distribution. We quantify thismismatch by noting thatΓ2(x, 4 · IJ×J ) = 32.77 <
∑J

j=1 Mj.

Again, Figure 2(a) shows the concentration success probability over these10000 random matrices. It is evident that these

mismatched DBD matrices provide decidedly less sharp concentration of‖Φx‖2.

B. Repeated Block Diagonal (RBD) Matrices

1) Analytical Results:We now turn our attention to the concentration performance of the more restricted RBD matrices.

Before stating our result, let us again define the requisite notation. Given a signalx ∈ RNJ partitioned intoJ blocks of length
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N , we define theJ ×N matrix of concatenated signal blocks

X := [x1 x2 · · · xJ ]T , (6)

and we denote the non-negative eigenvalues of theN × N symmetric matrixA = XTX as {λi}Ni=1. We let λ = λ(x) :=

[λ1, . . . , λN ]
T ∈ R

N be the vector composed of these eigenvalues. We letM := M1 = M2 = · · · = MJ denote the number of

measurements to be taken in each block. Finally, for a given signal x ∈ R
NJ and per-block measurement rateM , we define

the quantities

Λ2(x,M) :=
M‖λ‖21
‖λ‖22

and Λ∞(x,M) :=
M‖λ‖1
‖λ‖∞

. (7)

Equipped with this notation, our main result concerning theconcentration of RBD matrices is as follows.

Theorem III.2. Supposex ∈ RNJ . Let Φ̃ be a randomM×N matrix populated with i.i.d. zero-mean Gaussian entries having

varianceσ2 = 1
M , and letΦ be anMJ ×NJ block diagonal matrix as defined in(1), with Φj = Φ̃ for all j. Then

P (
∣∣‖Φx‖22 − ‖x‖22

∣∣ > ǫ‖x‖22) ≤ 2 exp
{
−C1 min

(
C2

3ǫ
2Λ2(x,M), C3ǫΛ∞(x,M)

)}
, (8)

whereC1 andC3 are absolute constants.

Proof: See Appendix B.

From (8), one can deduce that the concentration probabilityof interest decays exponentially as a function ofǫ2Λ2(x,M)

in the case where0 ≤ ǫ ≤ Λ∞(x,M)
C3Λ2(x,M) and exponentially as a function ofǫΛ∞(x,M) in the case whereǫ > Λ∞(x,M)

C3Λ2(x,M) . Thus,

we see that the concentration rate again depends explicitlyon the signalx being measured.

Again, since we are frequently concerned in practice with applications whereǫ is small, let us focus on the first case of (8),

when the concentration exponent scales withΛ2(x,M). It follows from the standard relation betweenℓ1 and ℓ2 norms that

M ≤ Λ2(x,M) ≤M min(J,N). One extreme,Λ2(x,M), is achieved whenA =
∑
j xjx

T
j has only one nonzero eigenvalue,

implying that the blocksxj are the same modulo a scaling factor. In this case, the RBD matrix exhibits significantly worse

performance than a dense i.i.d. matrix of the same sizeMJ×NJ , for which the concentration exponent would scale withMJ

rather thanM . However, this diminished performance is to be expected since the samẽΦ is used to measure each identical

signal block.

The other extreme,Λ2(x,M) = M min(J,N) is favorable as long asJ ≤ N , in which case the concentration exponent

scales withMJ just as it would for a dense i.i.d. matrix of the same size. Forthis case to occur,A must haveJ nonzero

eigenvalues and they must all be equal. By noting that the nonzero eigenvalues ofA = XTX are the same as those of the

Grammian matrixG = XXT , we conclude that this most favorable case can occur only when the signal blocks are mutually

orthogonal and have the same energy. Alternatively, if the signal blocks span aK-dimensional subspace ofRN we will have

M ≤ Λ2(x,M) ≤MK. All of this can also be seen by observing that calculating the eigenvalues ofA = XTX is equivalent

to running Principal Component Analysis (PCA) [29] on the matrix X comprised of theJ signal blocks. Said another way, an

RBD matrix performs as well as a dense i.i.d. matrix of the same size when the signal has uniform energy distribution across
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its blocks (as in the DBD case)and has sufficient variation in the directions exhibited by the blocks.

We note that there is a close connection between the diversity measuresΓ2(x,M) andΛ2(x,M) that is not apparent at

first glance. For a fair comparison, we assume in this discussion thatM := diag(M,M, . . . ,M). Now, note that‖λ‖21 = ‖γ‖21
and also that‖λ‖22 = ‖A‖2F = ‖XXT‖2F =

∑J
i=1 ‖xi‖42 + 2

∑
i>j(x

T
i xj)

2 = ‖γ‖22 + 2
∑
i>j(x

T
i xj)

2. Using these two

relationships, we can rewriteΛ2(x,M) as

Λ2(x,M) =
M‖λ‖21
‖λ‖22

=
M‖γ‖21

‖γ‖22 + 2
∑
i>j(x

T
i xj)

2
≤ M‖γ‖21
‖γ‖22

= Γ2(x,M). (9)

From this relationship we see thatΛ2 andΓ2 differ only by the additional inner-product term in the denominator ofΛ2, and

we also see thatΛ2 = Γ2 if and only if the signal blocks are mutually orthogonal. This more stringent condition for RBD

matrices—requiring more intrinsic signal diversity—is expected given the more restricted structure of the RBD matrices.

2) Supporting Experiments:While the quantityΛ2(x,M) plays a critical role in our analytical upper bound (8) on the

concentration tail probabilities, it is reasonable to ask whether this quantity actually plays a central role in the empirical

concentration performance of RBD matrices. We explore thisquestion with a series of simulations. To begin, we randomly

construct a signal of length1024 partitioned intoJ = 16 blocks of lengthN = 64, and we perform Gram-Schmidt

orthogonalization to ensure that theJ blocks are mutually orthogonal and have equal energy. The nonzero eigenvalues of

A = XTX are shown in the plot ofλ in Figure 1(b) (and the signalx itself, denoted “Sig. 1”, is plotted in the top left corner).

As we have discussed above, for signals such as Sig. 1 we should haveΛ2(x,M) = MJ , and Theorem III.2 suggests

that an RBD matrix can achieve the same concentration rate asa dense i.i.d. matrix of the same size. Fixing this signal, we

generate a series of10000 random64× 1024 matricesΦ populated with zero-mean Gaussian random variables. In onecase,

the matrices are dense and each entry has variance1/64. In another case, the matrices are RBD, with a single4 × 64 block

repeated along the main diagonal, comprised of i.i.d. Gaussian entries with variance14 . For each type of matrix, Figure 2(b)

shows the percentage of trials for which(1− ǫ) ≤ ‖Φx‖2/‖x‖2 ≤ (1 + ǫ) as a function ofǫ. As anticipated, we can see that

the curves for the dense and RBD matrices are indistinguishable.

In contrast, we also construct a second signalx (denoted “Sig. 2”) that has equal energy between the blocks but has

non-orthogonal components (resulting in non-uniformλ); see Figure 1(c). This signal was constructed to ensure that the

sorted entries ofλ exhibit an exponential decay. Due to the non-orthogonalityof the signal blocks, we see for this signal

that Λ2(x,M) = 21.3284 which is approximately3 times less than the best possible value ofMJ = 64. Consequently,

Theorem III.2 provides a much weaker concentration exponent when this signal is measured using an RBD matrix than when

it is measured using a dense i.i.d. matrix. As shown in Figure2(b), we see that the concentration performance of the full dense

matrix is agnostic to this new signal structure, while the concentration is clearly not as sharp for the RBD matrix.

IV. A PPLICATIONS

As discussed briefly in Section II-C, a concentration of measure inequality—despite nominally pertaining to the norm

preservation of a single signal—can lead to a number of guarantees for problems involving multi-signal embeddings and signal

discrimination. In this section, we extend our concentration bounds to formulate a modified version of the JL lemma appropriate
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for block diagonal matrices. We also survey a collection of compressive-domain inference problems (such as detection and

classification) in which such a result can be leveraged. For simplicity we will focus on DBD matrices in this section, but

parallel results can be derived in each case for RBD matrices. Given the nonuniform nature of our concentration bounds, the

performance of algorithms for solving these problems will depend on the signals under consideration, and so, in SectionV we

provide several examples of signal classes that are particularly favorable for measurement via DBD or RBD matrices.

A. Stable Embeddings and the Johnson-Lindenstrauss Lemma

For a given signalx ∈ RNJ and measurement allocationM, let us definẽΓ2(x,M) := Γ2(x,M)∑
J
j=1

Mj
andΓ̃∞(x,M) := Γ∞(x,M)∑

J
j=1

Mj
.

Note that both quantities are upper bounded by1, with equality achieved for signals best matched toM as discussed in

Section III-A. Using this notation, Theorem III.1 allows usto immediately formulate a version of the JL lemma appropriate

for DBD matrices.

Theorem IV.1. LetU, V be two finite subsets ofRNJ , letΦ be a randomly generated DBD matrix as described in Theorem III.1

with measurement allocationM, and letρ ∈ (0, 1) be fixed. If

J∑

j=1

Mj ≥
log |U |+ log |V |+ log(2/ρ)

C1 min

(
C2

2
δ2

‖φ‖4

ψ2

minu∈U,v∈V Γ̃2(u − v,M), C2δ
‖φ‖2

ψ2

minu∈U,v∈V Γ̃∞(u− v,M)

) , (10)

then with probability exceeding1 − ρ, Φ will provide a stable embedding of(U, V ) with conditioningδ. Alternatively, under

the same conditions, with probability exceeding1−ρ the matrixΦ will provide a stable embedding of(U, V ) with conditioning

δ̃(U, V,M, ρ) :=
‖φ‖2ψ2

C2
max

(√
log |U |+ log |V |+ log(2/ρ)

C1 minu∈U,v∈V Γ2(u − v,M)
,

log |U |+ log |V |+ log(2/ρ)

C1 minu∈U,v∈V Γ∞(u− v,M)

)
. (11)

Proof: Taking the union bound over allu ∈ U andv ∈ V and using (5), we then know that the desired (near) isometry

holds over all difference vectorsu− v except with probability bounded by

2 |U | |V | exp
(
−C1 min

(
C2

2δ
2

‖φ‖4ψ2

min
u∈U,v∈V

Γ2(u− v,M),
C2δ

‖φ‖2ψ2

min
u∈U,v∈V

Γ∞(u− v,M)

))
. (12)

Ensuring that (10) holds guarantees that the above failure probability is less thanρ. The bound in (11) follows from (10) and

the observation thatmin(aδ2, bδ) = c implies thatδ = max
(√

c
a ,

c
b

)
.

Similar theorems can be formulated for RBD matrices, as wellas for stable embeddings of a signal subspace rather than just a

finite family of signals. Equation (10) gives a lower bound onthe total number of measurements to guarantee a stable embedding

with conditioningδ. One can see that the denominator on the right-hand side willscale withδ2 ·minu∈U,v∈V Γ̃2(u−v,M) when

0 ≤ δ ≤ ‖φ‖2

ψ2
minu∈U,v∈V Γ̃∞(u−v,M)

C2 minu∈U,v∈V Γ̃2(u−v,M)
and with δ ·minu∈U,v∈V Γ̃∞(u − v,M) when δ >

‖φ‖2

ψ2
minu∈U,v∈V Γ̃∞(u−v,M)

C2 minu∈U,v∈V Γ̃2(u−v,M)
. Thus,

focusing just on cases whereδ is small, in order to guarantee a stable embedding with a moderate number of measurements,

we requireΓ̃2(u − v,M) to be sufficiently close to1 over all u ∈ U andv ∈ V . Equivalently, ifΓ2(u − v,M) is uniformly

close to
∑

Mj over allu ∈ U andv ∈ V , the conditioning̃δ provided in (11) is comparable to what would be achieved with

a dense i.i.d. random matrix of the same size. In Section V, weprovide several examples of signal classes ofU andV for

which it may be reasonable to expect such uniformly favorable Γ2 (or Λ2) values.
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The attentive reader may notice that the failure probability in (12) is in fact loose, since we have bounded the sum of

the individual failure probabilities by|U | |V | times the worse case failure probability. Due to the exponential form of these

probabilities, however, it seems that the worse case probability—even if it is rare—will typically dominate this sum. Therefore,

in most applications we do not expect that it is possible to significantly improve over the bounds provided in (12) and thus

(10). Unfortunately, it appears that this fact would forbidthe derivation of a sharp RIP bound for block diagonal matrices via

the elementary covering arguments mentioned briefly in Section II-C.4 However, such an RIP result, which would guarantee

the stable embedding of an infinite family of signals that aresparse in a particular basis, is not necessary for problems that

require embeddings of only finite signal families or appropriate for problems where the signals may not all be sparse in the

same basis (e.g., using the RIP to derive embedding guarantees such as Theorem IV.1 could require many more measurements

than using a concentration bound).

Indeed, ensuring a stable embedding of even a finite signal class is very useful for guaranteeing the performance of many

types of compressive-domain signal inference and processing algorithms. In the following subsections, we explore twocanonical

tasks (detection and classification) in detail to show how signal characteristics affect one’s ability to solve these problems using

measurements acquired via a block diagonal matrix. Performing tasks such as these directly in the measurement space notonly

reduces the data acquisition burden but can also reduce the computational burden far below what is required to solve these

problems in the high dimensional ambient signal space.

Before concluding this subsection, we briefly note that there are several other tasks (aside from detection and classification)

that can be performed in the measurement space when a block diagonal matrix provides a stable embedding of a finite signal

family. For one example, when a block diagonal matrixΦ provides a stable embedding of(S, {x}) for some signal database

S and query signalx, it is possible to solve the approximate nearest neighbor problem [16] (finding the closest point inS to

x) in the compressed domain without much loss of precision. Another potential application in compressive signal processing

involves a simple compressive-domain linear estimator [22]. WhenΦ provides a stable embedding of(L,X ∪ −X ) for some

setsL andX , then for anyℓ ∈ L andx ∈ X , we can estimate the value of〈ℓ, x〉 from the measurements〈Φℓ,Φx〉. Signal

families L and X whose sum and difference vectorsℓ ± x have favorableΓ2 values will have favorable and predictable

estimation performance. Finally, a similar result also discussed in [22] shows thatfiltering vectors in order to separate signal

and interference subspaces is possible when the differencevectors between these subspaces are stably embedded byΦ.

B. Signal Detection in the Compressed Domain

While the canonical CS results center mostly around reconstructing signals from compressive measurements, there is a

growing interest in forgoing this recovery process and answering certain signal processing questions directly in the compressed

domain. One such problem that can be solved is binary detection, where one must decide whether or not a known template

signal was present when the noisy compressive measurementswere collected [22, 31–33]. In particular, lets ∈ RNJ denote a

4As an aside, since the original submission of this manuscript, some of the authors (with an additional collaborator) have shown that using tools from
the theory of empirical processes [28], it is possible to derive RIP bounds for DBD matrices [30] that are in fact dependent on the basis used for sparse
representation of the signals. This does not make the present results obsolete, however: neither our concentration bounds nor our measurement bound (10)
follow as a consequence of the RIP result.
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known signal, and suppose that from the measurement vectory, we wish to decide between two hypotheses:

H0 : y = z or H1 : y = Φs+ z,

whereΦ is a known compressive measurement matrix, andz is a vector of i.i.d. zero-mean Gaussian noise with varianceσ2.

If one were designing a measurement matrix specifically for the purpose of detecting this signal, then the optimal choiceof

Φ would be the matched filter, i.e.,Φ = sT . However, implementing a measurement system that is designed specifically for

a particulars restricts its capabilities to detecting that signal only, which could require a hardware modification every times

changes. A more generic approach would be to designΦ randomly (perhaps with a block diagonal structure out of necessity

or due to efficiency considerations) and then use the acquired measurementsy to test for one or more candidate signalss.

Given the measurementsy, a Neyman-Pearson (NP) optimal detector [22] maximizes theprobability of detection,PD :=

P {H1 chosen|H1 is true}, subject to a given limitation on the probability of a false alarm,PF = P {H1 chosen|H0 is true}.

The optimal decision for this problem is made based on whether or not the sufficient statistict := yTΦs surpasses a threshold

κ, i.e., t
H1

>
<
H0

κ, whereκ is chosen to meet the constraintPF ≤ α for a specifiedα. As can be seen from the analysis in [22],

the performance of such a detector depends on‖Φs‖2. In effect, if Φ “loses” signal energy for some signals the detector

performance will suffer, and ifΦ “amplifies” signal energy for some signals the detector performance will improve. A stable

embedding of any signal the detector may encounter, however, guarantees consistent performance of the detector.

Theorem IV.2. SupposeS is a finite set of signals and letΦ be a randomly generated DBD matrix as described in Theorem III.1

with a number of measurements denoted by the matrixM. Fix 0 < ρ < 1 and pickα such thatPF ≤ α. Then with probability

exceeding1− ρ, any signals ∈ S can be detected with probability of detection bounded by

Q

(
Q−1(α)−

√
1− δ̃(S, {0},M, ρ)

√
‖s‖22
σ2

)
≤ PD(α) ≤ Q

(
Q−1(α)−

√
1 + δ̃(S, {0},M, ρ)

√
‖s‖22
σ2

)
,

whereQ(α) = 1√
2π

∫∞
α

e−
u2

2 du and wherẽδ(S, {0},M, ρ) is as defined in(11).

The proof of this theorem follows by combining the fact thatPD(α) = Q
(
Q−1(α) − ‖Φs‖2

σ

)
(see [22]) with (11) and the

monotonicity of the functionQ(·). While achieving the best possiblePD for a givenPF is of course desirable for a detector,

another very important consideration for a system designeris the reliability and consistency of that system. Large fluctuations

in performance make it difficult to ascribe meaning to a particular detection result and to take action with a certain level of

confidence. The theorem above tells us that the consistency of the detector performance is tied to how reliablyΦ preserves the

norm of signals inS. Examining this relationship, it is clear that more favorable values ofΓ2(s,M) for a signal class result

in tighter bounds onPD(α) and therefore in stronger consistency guarantees for the detector.

To illustrate this fact with an example, we create a single DBD measurement matrixΦ ∈ RMJ×NJ having an equal number

of measurementsMj = M per block. We takeM = 4, J = 16 andN = 64, and we draw the nonzero entries ofΦ as i.i.d.

Gaussian random variables with variance1/M . We test the detection performance of this matrix by drawing10000 unit-norm

test signals randomly from two classes:S1, in which signals have uniform energy across their blocks, and S2, in which signals

have decaying energy across their blocks. We choose the noise varianceσ2 such that each test signals has a constant signal-
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Fig. 3. (a) Histogram ofPD for 10000 signals with uniform energy across blocks (signalclassS1) and for 10000 signals with decaying energy
across blocks (signal classS2) when measured with a DBD matrix. The compressive NP detector has the constraintPF ≤ α = 0.1. (b) Plots
of the probability of misclassificationPE over a range of values ofM = 1, · · · , 20. The first class of signalsS1 are sparse in the frequency
domain. The second class of signalsS2 are nonzero only on a single block in the time domain. WhilePE decreases with increasingM for both
classes of signals, classification performs better for the signals inS1, which are more amenable to a stable embedding with a DBD matrix.

to-noise ratio of10 log10
(

‖s‖2

2

σ2

)
= 8dB. Because of the construction ofS1, Γ2(s,M) attains its maximum value ofMJ for

all signalss ∈ S1, resulting a small conditioning̃δ and a tight bound onPD. In contrast,S2 will have a smaller value of

Γ2(s,M), resulting in larger values of̃δ and much looser bounds onPD. We choose the maximum probability of failure to

beα = 0.1 and use the equationPD(α) = Q
(
Q−1(α)− ‖Φs‖2

σ

)
to calculate the expectedPD for each signal.

Figure 3(a) shows the histogram ofPD for the signals inS1 andS2 when measured with a DBD matrix. We see that for the

uniform energy signals inS1, the detector performance is indeed tightly clustered around PD = 0.9; one can see that this is

the point of concentration predicted by Theorem IV.2 sinceQ
(
Q−1(0.1)−

√
108/10

)
≈ 0.8907. Thus for this class of signals,

the detector performance is consistent and we can be assuredof a favorablePD when using the detector for all signals inS1.

However, when using the DBD matrix on the signal classS2, thePD values are widely spread out compared to those forS1,

despite the fact that the averagePD is nearly the same. Although some individual signals may have above average performance

because the measurement matrix happened to amplify their energies, other signals may have very poor performance because

the measurement matrix significantly attenuated their energies. Thus this experiment shows how the signal statistics affect the

performance reliability in compressive detection tasks when the measurements matrices have block diagonal structure.

C. Classification in the Compressed Domain

Rather than determining the presence or absence of a fixed candidate signal, some scenarios may require the classification

of a signal among multiple hypotheses [22, 32]. In particular, let s1, s2, . . . , sR ∈ RNJ denote known signals, and suppose that

from the measurement vectory, we wish to decide betweenR hypotheses:

Hi : y = Φsi + z, for i = 1, 2, . . . , R,

whereΦ is a known compressive measurement matrix, andz is a vector of i.i.d. zero-mean Gaussian noise with varianceσ2.

It is straightforward to show that when each hypothesis is equally likely, the classifier with minimum probability of error

selects the hypothesis that minimizes the sufficient statistic ti := ‖y − Φsi‖22. As can be imagined, the performance of such

a classifier depends on how wellΦ preserves pairwise distances among the signals{si}. If a situation were to occur where
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‖Φsp−Φsq‖2

‖sp−sq‖2

was small for somep, q, thensp could easily be mistaken forsq in the measurementsy. Therefore, having a stable

embedding can again be particularly useful for guaranteeing consistent and predictable performance.

Theorem IV.3. Let S denote a fixed set of signals with|S| = R <∞ and fix0 < ρ < 1. SupposeΦ is a randomly generated

DBD matrix as described in Theorem III.1 with a number of measurements denoted by the matrixM. Assume we receive the

measurementsy = Φsi∗ + z for somei∗ ∈ {1, 2, . . . , R} and z ∼ N (0, σ2I). Then, with probability at least

1−
(
R− 1

2

)
exp




−
d2
(
1− δ̃(S,S,M, ρ)

)

8σ2




− 2ρ,

we havei∗ = argmini∈{1,...,R} ti and thus the signalsi∗ can be correctly classified. Hered := mini,j ‖si − sj‖2 denotes the

minimum separation among the signals inS and δ̃(S,S,M, ρ) is as defined in(11).

The proof of this theorem again follows by combining bounds from [22] with (11). From this theorem it follows that, ifΦ

is a block diagonal matrix, signal familiesS whose difference vectorssp − sq have favorableΓ2 values will have consistent

and predictable classification performance.

The following simulation demonstrates the potential for predictable classification of signals acquired using compressive block

diagonal matrices. We again consider DBD matrices having anequal number of measurementsMj = M per block, and we

consider signals havingJ = 16 blocks of lengthN = 64. We first create a favorable class of unit-norm signalsS1 with R = J

elements such that each signal has just4 nonzero DFT coefficients at randomly chosen frequencies. Toensure that the signals

are real, we restrict the coefficients on conjugate pairs of frequencies to have complex conjugate values. We also ensurethat

no frequencies are repeated amongst the signals inS1. As we show in Section V-B, frequency sparse signals with randomly

selected frequency support will have largeΓ2 values with high probability; therefore the difference of any two signals from

S1 will also have a largeΓ2 value with high probability. We also create a second class ofunit-norm signalsS2 with R = J

elements such that each signalsr for r = 1, 2, . . . , R has nonzero (and randomly selected) values only on itsr-th block and

is zero everywhere else. Difference signals from this classwill have smallΓ2 values since their energies across the blocks are

not uniform.

For eachM ranging from1 to 20, we create1000 instances of a random DBD matrixΦ of sizeMJ ×NJ . For eachΦ and

for each signal classS1 andS2, we identify the indicesi1, i2 that minimize‖Φsi1 −Φsi2‖2. The signals corresponding tosi1

andsi2 will be among the most difficult to classify since they each have a close neighbor (eitherΦsi2 or Φsi1 , respectively)

after projection byΦ. Then for each of these signals{sij}j=1,2, we create1000 noisy measurement vectorsy = Φsij + z

with z ∼ N (0, σ2I) and withσ chosen such that10 log10
(
d2

σ2

)
= 15dB. Finally, we letp = argmin ti be the output of the

classifier and calculate the probability of misclassification,PE(M), for eachM as the proportion of occurrences ofp 6= i1 or

p 6= i2, respectively, over the combined1000 instances of noisez and1000 instances ofΦ.

Figure 3(b) plotsPE(M) for both classes of signals. As expected, the curve forS1 is lower than that forS2 since the

signals inS1 are expected to have a stable embedding with a tighter conditioning. Both curves also show a decreasing trend

for increasingM (although it is much more obvious for signal classS2) as should be expected. Lastly, we see thatPE(M)

saturates at a certain level with increasingM . This is also predicted by Theorem IV.3, where the smallest upper bound that can
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be provided forPE is given by R−1
2 exp

(
− d2

8σ2

)
> 0. With the parameters used in this experiment, it can be calculated that

the smallest theoretical upper bound forPE is approximately0.144. This shows that Theorem IV.3 may be slightly pessimistic.

V. FAVORABLE SIGNAL CLASSES

The various compressive signal processing guarantees presented in Section IV are built upon the premise that a DBD matrix

provides a stable embedding of the signals of interest; as wehave noted, these arguments can be extended to RBD matrices as

well. Our analysis has also indicated that such stable embeddings are most easily realized with matrices that are well matched

to the energy distribution (and sometimes orthogonality) of the signal blocks. In many applications, however—perhapsfor

the sake of generality, or because little advance knowledgeof the signals is available—it may be most natural to use a fixed

and equal allocation of measurements. Fortunately, there are a number of interesting signal families (and, in some cases, the

corresponding difference signals) that provide favorableΓ2 values for “uniform” DBD matrices where allMj are equal (for all

j, we supposeMj = M for someM ) and in some cases also provide favorableΛ2 values for RBD matrices. In this section

we survey several such examples.

A. Delay Networks and Multiview Imaging

One favorable signal class for uniform DBD and RBD matrices can occasionally arise in certain sensor network or multi-

view imaging scenarios where signals with steeply decayingautocorrelation functions are measured under small perturbations.

Consider for example a distributed sensor network ofJ sensors where we would like to detect the presence of a known

signal given the observations from each sensor. Due to limited resources, each sensor uses random measurement matrices

Φ1,Φ2, . . . ,ΦJ to efficiently capture the underlying information with onlya few random projections. Suppose that the received

signalsx1, x2, . . . , xJ ∈ RN represent observations of some common known underlying prototype signalw ∈ RN . However,

due to the configurations of the sensors, these observationsoccur with different delays or translations. More formally, we might

consider the one-dimensional delay parametersδ1, δ2, . . . , δJ ∈ Z and have that for eachj, xj(n) = w(n−δj). Then, denoting

the measurements at sensorj asyj = Φjxj it is straightforward to see that the overall system of equations can be represented

with a DBD matrix, or whenΦ1 = Φ2 = · · · = ΦJ with an RBD matrix.

Assumingw is suitably zero-padded so that border and truncation artifacts can be neglected, we will have‖xj‖2 = ‖w‖2
for all xj ; this givesΓ2([x

T
1 xT2 · · ·xTJ ]T ,M) = MJ , which is the ideal case for observation with a uniform DBD matrix.

This suggests that the outputs from distributed network systems can be highly amenable to the sort of compressive-domain

signal inference and processing tasks described Section IV.

Moreover, the correlations among the componentsxj can be characterized in terms of the autocorrelation function Rw of

w: we will have〈xi, xj〉 =
∑N

n=1 xi(n)xj(n) =
∑N
n=1 w(n− δi)w(n − δj), which neglecting border and truncation artifacts

will simply equalRw(|δi− δj |). Therefore, signalsw that exhibit strong decay in their autocorrelation function will be natural

candidates for observation with RBD matrices as well. For example, equation (9) gives

Λ2([x
T
1 xT2 · · ·xTJ ]T ,M) =

MJ2‖w‖42
J‖w‖42 + 2

∑
i>j Rw(|δi − δj |)2

.

WhenRw(|δi − δj |) is small for mosti andj, the quantityΛ2([x
T
1 xT2 · · ·xTJ ]T ,M) is near its optimal value ofMJ .
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Γ2/M

(a)

Γ2/MJ

(b)

Fig. 4. Histograms of the normalized quantityΓ2 for frequency sparse signals. (a) The distribution ofΓ2

M
for randomly generated frequency

sparse signals of lengthN ′ = N × J = 64× 64 for sparsity levelsS ∈ {5, 30, 64}. Note thatΓ2

M
accumulates near its upper bound ofJ = 64

for all three sparsity levels. (b) The distribution ofΓ2

MJ
for randomly generated frequency sparse signals withS = 5 and the number of signal

blocksJ ∈ {64, 200, 400}. Note that Γ2

MJ
accumulates near its upper bound of 1.

B. Frequency Sparse Signals

Signals having sparse frequency spectra arise in many different applications involving communications intelligencesystems

and RF sensor networks. Based on time-frequency uncertainty principles and the well-known incoherence of sinusoids and

the canonical basis (i.e., “spikes and sines”) [34, 35], it is natural to expect that most signals that are sparse in the frequency

domain should have their energy distributed relatively uniformly across blocks in the time domain. In the following theorem,

we make formal the notion that frequency sparse signals are indeed likely to be favorable for measurement via uniform DBD

matrices, producing values ofΓ2(x,M) within a log factor of its maximum possible.

Theorem V.1. Let N, β > 1 be fixed, supposeN ′ = NJ > 512, and letM = diag{M,M, . . . ,M} be a DBD measurement

allocation withM fixed. LetΩ ⊂ [1, N ′] be of sizeS ≤ N generated uniformly at random. Then with probability at least

1−O(J(log(N ′))1/2(N ′)−β),5 every signalx ∈ CN
′

whose DFT coefficients are supported onΩ will have:6

Γ2(x,M) ≥MJ ·min





0.0779

(β + 1) log(N ′)
,

1
(√

6(β + 1) logN ′ + (logN ′)2

N

)2





. (13)

Proof: See Appendix C.

Note that asN ′ grows, the lower bound onΓ2(x,M) scales as MJ
1

N2
log4(N ′)

, which (treating the fixed valueN as a constant)

is within log4(N ′) of its maximum possible value ofMJ . Thus the concentration exponent formostfrequency sparse signals

when measured by a uniform DBD matrix will scale withǫ2MJ/ log4(N ′) for small ǫ. Also note that the failure probability

in the above theorem can be bounded byO( 1
N ′β−2 ) since bothJ and

√
log(N ′) are less thanN ′.

To explore the analysis above we use two illustrative simulations. For the first experiment, we generate 5000 signals with

lengthN ′ = NJ = 64 × 64 = 4096, using three different sparsity levelsS ∈ {5, 30, 64}. The DFT coefficient locations are

selected uniformly at random, and the corresponding nonzero coefficient values are drawn from the i.i.d. standard Gaussian

distribution. Figure 4(a) plots the ratioΓ2(x,M)
M , showing that this quantity is indeed near the upper bound ofJ = 64, indicating

5TheO(·) notation is with respect toN ′. With the component lengthN fixed, this means that only the number of blocksJ is growing with increasingN ′.
6We consider complex-valued signals for simplicity and clarity in the exposition. A result with the same spirit that holds with high probability can be

derived for strictly real-valued signals, but this comes atthe cost of a more cumbersome derivation.
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a favorable energy distribution. This gives support to the fact that the theoretical value ofΓ2(x,M) predicted in Theorem V.1

does not depend strongly on the exact value ofS. For the second experiment, we fix the sparsity atS = 5 and vary the signal

block lengthJ ∈ {64, 200, 400} (and thus the total signal lengthN ′ = NJ changes as well). For eachJ we generate 5000

random signals in the same manner as before and plot in Figure4(b) the distribution ofΓ2(x,M)
MJ . It is clear that this value

concentrates near its upper bound of1, showing the relative accuracy of the prediction thatΓ2

M scales linearly with increasing

J . While some of the quantities in Theorem V.1 appear pessimistic (e.g., the scaling withlog4(N ′)), these simulations confirm

the intuition derived from the theorem that frequency sparse signals should indeed have favorable energy distributions and

therefore favorable concentration properties when measured with DBD matrices.

Because differences between frequency sparse signals are themselves sparse in the frequency domain, it follows immediately

that not only do frequency sparse signalsx have favorableΓ2(x,M) values for uniform DBD matrices, but also that most

differencesx1−x2 between frequency sparse signals have favorableΓ2(x1−x2,M) values. Thus, when measured by a uniform

DBD matrix, many families of frequency sparse signals are likely to perform favorably and predictably in the compressive

signal processing scenarios outlined in Section IV.

Importantly, Theorem V.1 can also allow us to guarantee the stable embedding of certain infinite collections of frequency

sparse signals. In particular, for any sparse supportΩ on which (13) holds uniformly, one can apply standard covering arguments

(as discussed briefly in Section II-C) to guarantee that witha moderate total number of measurementsMJ = O
(

|Ω|
ǫ2 log4(N ′)

)
,

a uniform DBD matrix will simultaneously approximately preserve the norm of all frequency signals supported onΩ. This

fact allows one to consider compressive-domain interference cancellation (as discussed in Section IV-A and in [22]) from a

set of frequency sparse signals, where the set of possible interferers live in a known subspace of frequency sparse signals.

C. Difference Signals

In applications such as classification, we require a stable embedding of difference vectors between signals in a certainsignal

class. It is interesting to determine what signal families in addition to frequency sparse signals will give rise to difference

signals that have favorable values ofΓ2 (for uniform DBD matrices) orΛ2 (for RBD matrices).

We provide a partial answer to this question by briefly exemplifying a signal family that is favorable for measurement via

uniform DBD matrices. Consider a setQ ⊂ RJN of signals that, when partitioned intoJ blocks of lengthN , satisfy both of the

following properties: (i) eachx ∈ Q has uniform energy across theJ blocks, i.e.,‖x1‖22 = ‖x2‖22 = · · · = ‖xJ‖22 = 1
J ‖x‖22,

and (ii) eachx ∈ Q has highly correlated blocks, i.e., for somea ∈ (0, 1], 〈xi, xj〉 ≥ a 1
J ‖x‖22 for all i, j ∈ {1, 2, . . . , J}.

The first of these conditions ensures that ifM = diag{M,M, . . . ,M}, then eachx ∈ Q will have Γ2(x,M) = MJ and thus

be highly amenable to measurement by a uniform DBD matrix. The second condition, when taken in conjunction with the

first, ensures that all difference vectors of the formx− y wherex, y ∈ Q will also be highly amenable to measurement by a

uniform DBD matrix. In particular, for anyi, j ∈ {1, 2, . . . , J}, one can show that

∣∣‖xi − yi‖22 − ‖xj − yj‖22
∣∣ ≤ 4

√
2‖x‖2‖y‖2

√
1− a

J
,

meaning that the energy differences in each block of the difference signals can themselves have small differences. One



19

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

jth frame

fr
am

e 
en

er
gy

 

 

Bridge close
Bridge far
Difference, Γ

2
/M=149.9988

(a)

0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

0.012

jth frame

fr
am

e 
en

er
gy

 

 

Coastguard
Miss America
Difference, Γ

2
/M=148.7550

(b)
Fig. 5. Plots of the energy distributions of individual videos and of their differences for the best video pair and the worst video pair among
all possible

(

8

2

)

possible video pairs. (a) The difference of the video pair, “Bridge close” and “Bridge far”, giving the best value ofΓ2(x −
y,M)/M = 149.9988. (b) The difference of the video pair, “Coastguard” and “Miss America”, giving the worst value ofΓ2(x− y,M)/M =
148.7550.

implication of this bound is that asa→ 1, Γ2(x− y,M)→MJ .

Signal families of the form specified above—with uniform energy blocks and high inter-block correlations—may generally

arise as the result of observing some phenomenon that variesslowly as a function of time or of sensor position. As an empirical

demonstration, let us consider a small database of eight real-world video signals frequently used as benchmarks in the video

compression community, where we will treat each video frameas a signal block.7 We truncate each video to haveJ = 150

frames, each of sizeN = 176 × 144 = 25344 pixels, and we normalize each video (not each frame) to have unit energy.

Because the test videos are real-world signals, they do not have perfectly uniform energy distribution across the frames, but

we do observe that most frame energies are concentrated around 1
J = 0.00667.

Video name Akiyo Bridge close Bridge far Carphone Claire Coastguard Foreman Miss America
max〈xi, xj〉 0.00682 0.00668 0.00668 0.00684 0.00690 0.00742 0.00690 0.00695
min〈xi, xj〉 0.00655 0.00664 0.00665 0.00598 0.00650 0.00562 0.00624 0.00606

Γ2/M 149.9844 149.9998 149.9999 149.9287 149.9782 149.2561 149.9329 149.9301

TABLE I
The maximum and minimum inner products between all pairs of distinct frames in each video, and the quantityΓ2/M for each video. The best

possible value ofΓ2/M is J = 150.

For each video, we present in Table I the minimum and maximum inner products〈xi, xj〉 over all i 6= j, and we also list the

quantity Γ2(x,M)
M for each video. As we can see, the minimum inner product for each video is indeed quite close to 0.00667,

suggesting from the arguments above that the pairwise differences between various videos are likely to have highly uniform

energy distributions. To verify this, we compute the quantity Γ2

M for all possible
(
8
2

)
pairwise difference signals. As we are

limited in space, we present in Figure 5 plots of the energies‖xj‖22, ‖yj‖22, and‖xj − yj‖22 as a function of the frame index

j for the pairs of videosx, y that give the best (highest) and the worst (smallest) valuesof Γ2(x−y,M)
M . We see that even the

smallestΓ2

M value is quite close to the best possible value ofΓ2

M = 150. All of this suggests that the information required to

discriminate or classify various signals within a family such as a video database may be well preserved in a small number of

random measurements collected by a uniform DBD matrix.

7Videos were obtained from http://trace.eas.asu.edu/yuv/.
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D. Random Signals

Our discussions above have demonstrated that favorableΓ2 values (for uniform DBD matrices) andΛ2 values (for RBD

matrices) can arise for signals in a variety of practical scenarios. This is no accident. Indeed, as a blanket statement,it is true

that a large majority of all signalsx ∈ RJN , when partitioned into a sufficiently small number of blocksJ and measured

uniformly, will have favorable values of bothΓ2 andΛ2. One way of formalizing this fact is with a probabilistic treatment

such as that given in the following lemma.

Lemma V.1. Let φ denote a subgaussian random variable with mean 0, varianceσ2, and subgaussian norm‖φ‖ψ2
, and

supposex ∈ RNJ is populated with i.i.d. realizations ofφ. Let M = diag{M,M, . . . ,M} with M fixed. Pickǫ ≤ ‖φ‖2

ψ2

C2

and

suppose thatJ ≤ C1C
2

2
Nǫ2

2‖φ‖4

ψ2
log(12/ǫ)

, whereC1, C2 are absolute constants as given in Theorem III.1. Then, withprobability at

least1− 2 exp

(
− 1

2
C1C

2

2
Nǫ2

‖φ‖4

ψ2

)
, we have

Γ2(x,M) ≥ Λ2(x,M) ≥M +M

(
1− ǫ

1 + ǫ

)2

(J − 1).

Proof: See Appendix D.

We see from Lemma V.1 that when random vectors are partitioned into a sufficiently small number of blocks, these signals

will have their norms preserved giving rise toΓ2(x,M) andΛ2(x,M) values close to their optimal value ofMJ . To give

some illustrative numbers, numerical simulations showed that over 10000 random draws of Gaussian i.i.d. signals withJ = 16

andN = 64 the average value ofΓ2(x,M)/M was 15.5 and the average value ofΛ2(x,M)/M was 12.6, which are both

large fractions of the maximum possible value of16. We also note that by using the same argument we can show that the

differences of random signals will exhibit largeΓ2 andΛ2 values. One possible use of this lemma could be in studying the

robustness of block diagonal measurement systems to noise in the signal. The lemma above tells us that when restrictions

are met on the number of blocks, random noise will tend to yield blocks that are nearly orthogonal and have highly uniform

energies, thereby guaranteeing that they will not have their energy amplified by the matrix.

VI. CONCLUSION

In this paper we have derived concentration of measure inequalities for compressive DBD and RBD matrices. Our experi-

mental results confirm what our theoretical bounds suggest:that the actual probability of concentration depends on thedegree

of alignment between the allocation of the measurements andthe energy distribution (and sometimes orthogonality) of the

signal blocks. However, in situations where one can optimize the measurement allocation in anticipation of certain signal

characteristics or where a fixed system may be measuring certain favorable classes of signals, we have shown that the highly

structured DBD and RBD matrices can provide concentration performance that is on par with the dense i.i.d. matrices often

used in CS. We have highlighted a number of compressive signal processing applications that benefit from having a stable

embedding of a finite signal family, and we have presented a modified JL lemma for block diagonal matrices that reflects the

number of measurements required to ensure such a stable embedding. Finally, we have surveyed a number of signal classes

whose blockwise energy distribution and/or orthogonalitymakes them well-suited to measurement via uniform DBD matrices
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or via RBD matrices. Despite not leading to state-of-the-art RIP bounds, we conclude that our nonuniform concentrationresults

can provide a valuable tool for understanding and possibly mitigating the potential pitfalls of working with highly constrained

block diagonal matrices.

There are many natural questions that arise from these results and are suitable topics for future research. For example,

it would be natural to consider whether the concentration results for Gaussian RBD matrices could be extended to more

general subgaussian RBD matrices (to match the distribution used in our DBD analysis), or whether strong RIP results can

be established for RBD matrices. Also, as more applicationsare identified in the future, it will be important to examine the

diversity characteristics of a broader variety of signal classes to determine their favorability for measurement via block diagonal

matrices. Additionally, it would be interesting to examinewhether the concentration of measure result for RBD matrices could

prove useful in the analysis in the multiple measurement vector (MMV) problem [36, 37] that arises, for example, in array

signal processing.

As a final note, we briefly mention that our concentration bounds for block diagonal matrices can actually be useful for

studying certainother types of structured matrices that arise in linear systems applications. In particular, these results can

be applied to derive concentration bounds and RIP results for compressive Toeplitz matrices that arise in problems suchas

channel sensing and for compressive observability matrices that arise in the analysis of linear dynamical systems. Although

space limitations prevent us from detailing these results here, we refer the interested reader to [38, 39] for more information.

APPENDIX A: PROOF OFTHEOREM III.1

Proof: Let y = Φx. For each matrixΦj , we let [Φj ]i,n denote thenth entry of theith row of Φj . Further, we letyj(i)

denote theith component of measurement vectoryj, and we letxj(n) denote thenth entry of signal blockxj .

We begin by characterizing the point of concentration. One can write yj(i) =
∑N

n=1 [Φj ]i,n xj(n), and so it follows that

Ey2j (i) = E

(∑N
n=1 [Φj ]i,n xj(n)

)2
. Since the[Φj ]i,n are zero-mean and independent, all cross product terms are equal to

zero, and therefore we can writeEy2j (i) = E
∑N
n=1 [Φj ]

2
i,n x

2
j (n) = σ2

j ‖xj‖22 = 1
Mj
‖xj‖22. Combining all of the measurements,

we then haveE‖y‖22 =
∑J

j=1

∑Mj

i=1 Ey2j (i) =
∑J

j=1

∑Mj

i=1
‖xj‖2

2

Mj
=
∑J
j=1 ‖xj‖22 = ‖x‖22.

Now, we are interested in the probability that
∣∣‖y‖22 − ‖x‖22

∣∣ > ǫ‖x‖22. SinceE‖y‖22 = ‖x‖22, this is equivalent to the

condition that
∣∣‖y‖22 −E‖y‖22

∣∣ > ǫE‖y‖22. For a givenj ∈ {1, 2, . . . , J} and i ∈ {1, 2, . . . ,Mj}, all {[Φj ]i,n}Nn=1 are i.i.d.

subgaussian random variables with subgaussian norms equalto ‖ φ√
Mj

‖ψ2
=

‖φ‖ψ2√
Mj

. From above, we know thatyj(i) can be

expressed as a linear combination of these random variables, with weights given by the entries ofxj . As with Gaussian random

variables, linear combinations of i.i.d. subgaussian random variables are also subgaussian. In particular, from [40,Lemma 9]

it follows that eachyj(i) is a subgaussian random variable with subgaussian norm‖yj(i)‖ψ2
≤ c1

‖φ‖ψ2√
Mj

‖xj‖2, wherec1 is an

absolute constant.

In order to obtain a concentration bound for‖y‖22, we require the following important theorem regarding sumsof squares

of subgaussian random variables.

Theorem A.1. [40] Let X1, . . . , XL be independent subgaussian random variables with subgaussian norms‖Xi‖ψ2
for all
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i = 1, . . . , L. Let T = maxi ‖Xi‖2ψ2
. Then for everyt ≥ 0 and everya = (a1, . . . , aL) ∈ RL, we have

P

{∣∣∣∣∣

L∑

i=1

ai(X
2
i −EX2

i )

∣∣∣∣∣ ≥ t

}
≤ 2 exp

{
−C1 min

(
t2

16T 2‖a‖22
,

t

4T ‖a‖∞

)}
,

whereC1 > 0 is an absolute constant.

Proof: From [40, Lemma 14], we know that eachX2
1 , . . . , X

2
L is a subexponential random variable with subexponential

norm ‖X2
i ‖ψ1

≤ 2‖Xi‖2ψ2
. For eachi = 1, 2, . . . , L, we defineYi = X2

i − EX2
i is a zero-mean subexponential random, and

from [40, Remark 18], it follows that‖Yi‖ψ1
≤ 2‖X2

i ‖ψ1
. The theorem follows by applying [40, Proposition 16] to thesum

∑L
i=1 aiYi with K = 4T ≥ maxi ‖Yi‖ψ1

.

Now, let us definẽyj(i) :=
yj(i)

‖yj(i)‖ψ2

so that‖ỹj(i)‖ψ2
= 1, and note that

P
(∣∣‖y‖22 −E‖y‖22

∣∣ > ǫ‖x‖22
)
= P




∣∣∣∣∣∣

∑

j

∑

i

‖yj(i)‖2ψ2

(
ỹ2j (i)−Eỹ2j (i)

)
∣∣∣∣∣∣
> ǫ‖x‖22


 .

We apply Theorem A.1 to the subgaussian random variablesỹj(i) (over all i, j) with weightsaj(i) = ‖yj(i)‖2ψ2
. Letting

a denote a vector of length
∑
j Mj containing these weights, we have that‖a‖22 =

∑
j

∑
i a

2
j(i) =

∑
j

∑
i ‖yj(i)‖4ψ2

≤

c41‖φ‖4ψ2

∑
j

∑
i ‖xj‖42/M2

j = c41‖φ‖4ψ2

∑
j ‖xj‖42/Mj = c41‖φ‖4ψ2

‖M−1/2γ‖22 and‖a‖∞ = maxi,j aj(i) = maxi,j ‖yj(i)‖2ψ2
≤

c21‖φ‖2ψ2
maxj ‖xj‖22/Mj = c21‖φ‖2ψ2

‖M−1γ‖∞. Further note that‖x‖22 = ‖γ‖1 and‖x‖42 = ‖γ‖21. We complete the proof by

substituting these quantities into Theorem A.1 withT = 1 and t = ǫ‖x‖22 and by takingC2 = 1
4c2

1

.

APPENDIX B: PROOF OFTHEOREM III.2

In order to prove Theorem III.2, we will require the following two lemmas.

Lemma B.1. Supposex ∈ RNJ and Φ̃ is anM ×N matrix whereΦ̃T = [φ1 φ2 · · · φM ] with eachφi ∈ RN . Let Φ be an

MJ ×NJ RBD matrix as defined in (1) with allΦj = Φ̃. If y = Φx, then‖y‖22 =
∑M

i=1 φ
T
i Aφi, whereA = XTX with X

defined in (6).

Proof of Lemma B.1:‖y‖22 = xTΦTΦx =
∑J

j=1 x
T
j Φ̃

T Φ̃xj =
∑J

j=1 x
T
j

(∑M
i=1 φiφ

T
i

)
xj =

∑M
i=1 φ

T
i

(∑J
j=1 xjx

T
j

)
φi =

∑M
i=1 φ

T
i Aφi.

Lemma B.2. Supposez ∈ RN is a random vector with i.i.d. Gaussian entries each having zero-mean and varianceσ2. For

any symmetricN×N matrix A with eigenvalues{λi}Ni=1, there exists a collection of independent, zero-mean Gaussian random

variables{wi}Ni=1 with varianceσ2 such thatzTAz =
∑N

i=1 λiw
2
i .

Proof of Lemma B.2:BecauseA is symmetric, it has an eigen-decompositionA = V TDV , whereD is a diagonal matrix

of its eigenvalues{λi}Ni=1 andV is an orthogonal matrix of eigenvectors. Then we havezTAz = (V z)TD(V z) =
∑N
i=1 λiw

2
i ,

wherew = V z andw = [w1, w2, · · · , wN ]T . SinceV is an orthogonal matrix,{wi}Ni=1 are i.i.d. Gaussian random variables

with zero-mean and varianceσ2.

Proof of Theorem III.2: Let y = Φx. We first calculateE‖y‖22 to determine the point of concentration. Applying

Lemma B.1 toy and Lemma B.2 withz = φi for eachi = 1, 2, . . . ,M , we have‖y‖22 =
∑M

i=1 φ
T
i Aφi =

∑M
i=1

∑N
j=1

λj
Mw2

i,j ,
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where each{wi,j}i,j is an independent Gaussian random variable with zero mean and unit variance. After switching the

order of the summations and observing thatTr(XTX) = Tr(XXT ) whereTr(·) is the trace operator, we haveE‖y‖22 =
∑N

j=1
λj
M

∑M
i=1 Ew2

i,j =
∑N

j=1 λj = Tr(XXT ) = ‖x‖22.

Having established the point of concentration for‖y‖22, let us now compute the probability that
∣∣‖y‖22 − ‖x‖22

∣∣ > ǫ‖x‖22.

SinceE‖y‖22 = ‖x‖22, this is equivalent to the condition that
∣∣‖y‖22 −E‖y‖22

∣∣ > ǫE‖y‖22. We again apply Theorem A.1 to

establish a concentration result. To do so, note that eachwi,j is a subgaussian random variable with the same subgaussian

norm ‖w‖ψ2
:= ‖wi,j‖ψ2

; because these variables are Gaussian with unit variance, it is also known [40] that there exists an

absolute constantc2 such that‖w‖ψ2
≤ c2. Let us definew̃i,j :=

wi,j
‖w‖ψ2

so that‖w̃i,j‖ψ2
= 1, and note that

P (|‖y‖22 −E‖y‖22| > ǫ‖x‖22) = P




∣∣∣∣∣∣

∑

j

∑

i

‖w‖2ψ2

M
λj(w̃

2
i,j −Ew̃2

i,j)

∣∣∣∣∣∣
> ǫ‖x‖22


 .

We apply Theorem A.1 to the subgaussian random variablesw̃i,j (over all i, j) with weightsaj(i) =
‖w‖2

ψ2

M λj . Lettinga denote

a vector of lengthMJ containing these weights, we have that‖a‖22 =
∑

j

∑
i a

2
j (i) =

∑
j

∑
i

‖w‖4

ψ2

M2 λ2
j =

‖w‖4

ψ2

M

∑
j λ

2
j =

‖w‖4

ψ2

M ‖λ‖22 ≤ c4
2

M ‖λ‖22 and‖a‖∞ = maxi,j aj(i) =
‖w‖2

ψ2

M maxj λj =
‖w‖2

ψ2

M ‖λ‖∞ ≤ c2
2

M ‖λ‖∞. Note that‖x‖22 = Tr(XTX) =

‖λ‖1 and‖x‖42 = ‖λ‖21 since the eigenvalues{λj}Nj=1 are non-negative. We complete the proof by substituting these quantities

into Theorem A.1 withT = 1 and t = ǫ‖x‖22 and by takingC3 = 1
4c2

2

.

APPENDIX C: PROOF OFTHEOREM V.1

Our result follows from an application of the following.

Theorem C.2. [35, Theorem 3.1]Let x ∈ CN
′

and β > 1. SupposeN ′ > 512 and chooseNT andNΩ such that:

NT +NΩ ≤
0.5583N ′/q√
(β + 1) log(N ′)

and NT +NΩ ≤
√
2/3N ′

(
1
q −

(logN ′)2

N ′

)

√
(β + 1) log(N ′)

. (14)

Fix a subsetT of the time domain with|T | = NT . LetΩ be a subset of sizeNΩ of the frequency domain generated uniformly

at random. Then with probability at least1−O((log(N ′))1/2N ′−β), every signalx supported onΩ in the frequency domain

has most of its energy in the time domain outside ofT . In particular, ‖xT ‖22 ≤ ‖x‖2

2

q , wherexT denotes the restriction ofx to

the supportT .

Proof of Theorem V.1:First, observe that‖γ‖21 = ‖x‖42 and‖γ‖22 =
∑J

k=1 ‖xk‖42. Next, apply Theorem C.2 withNΩ = S

andNT = N = N ′/J , being careful to select a value forq such that (14) is satisfied. In particular, we require

1

q
≥ (N + S)

√
(β + 1) logN ′

0.5583N ′ and
1

q
≥

(N+S)√
2/3

√
(β + 1) logN ′ + (logN ′)2

N ′ .

This is satisfied if we choose

q ≤ min





0.5583N ′

(N + S)
√
(β + 1) logN ′

,
N ′

(N+S)√
2/3

√
(β + 1) logN ′ + (logN ′)2





. (15)

Choosing anyq satisfying (15), we have that withfailure probabilityat mostO((log(N ′))1/2(N ′)−β), ‖xk‖22 ≤ ‖x‖2

2

q for each
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k = 1, 2, . . . , J , implying that each block individually is favorable. Taking a union bound for allk to cover each block, we

have that with total failure probability at mostO(J(log(N ′))1/2(N ′)−β), ‖γ‖22 =
∑J

k=1 ‖xk‖42 ≤
J‖x‖4

2

q2 . Thus with this same

failure probability,Γ2

M =
‖γ‖2

1

‖γ‖2

2

≥ q2

J . Combining with (15) and using the fact thatS < N , we thus have:

Γ2

M
≥ min






0.55832N2J

(N + S)2(β + 1) logN ′ ,
N2J

(
(N+S)√

2/3

√
(β + 1) logN ′ + (logN ′)2

)2






≥ min






(0.55832/22)J

(β + 1) log(N ′)
,

J
(

2√
2/3

√
(β + 1) logN ′ + (logN ′)2

N

)2





.

APPENDIX D: PROOF OFLEMMA V.1

Proof: Let X be theJ × N matrix as defined in (6). Without loss of generality, we suppose the nonzero eigenvalues

{λi}min(J,N)
i=1 of XTX are sorted in order of decreasing magnitude, and we letλmax := λ1 andλmin := λmin(J,N). We can

lower boundΛ2 in terms of these extremal eigenvalues by writing

Λ2 =
M‖λ‖21
‖λ‖22

= M

∑
i λ

2
i +

∑
i

∑
j 6=i λiλj∑

i λ
2
i

≥M +M
λmin

λmax

∑
i

∑
j 6=i λi∑
i λi

= M +M
λmin

λmax
(J − 1). (16)

Assume thatǫ ≤ ‖φ‖2

ψ2

C2

, and let us define the following events:

A =

{
Nσ2(1− ǫ)2 ≤ ‖X

T z‖22
‖z‖22

≤ Nσ2(1 + ǫ)2, ∀z ∈ R
J

}
, B =

{
λmax ≤ Nσ2(1 + ǫ)2

}⋂{
λmin ≥ Nσ2(1− ǫ)2

}
,

C =

{
λmin

λmax
≥
(
1− ǫ

1 + ǫ

)2
}
, D =

{
Λ2 ≥M +M

(
1− ǫ

1 + ǫ

)2

(J − 1)

}
.

These events satisfyA = B ⊆ C ⊆ D, where the last relation follows from (16). It follows thatP (Dc) ≤ P (Ac), where

Ac represents the complement of eventA. BecauseXT is populated with i.i.d. subgaussian random variables, it follows as a

corollary of Theorem III.1 (by settingM ← N andJ ← 1 in the context of that theorem) that for anyz ∈ RJ andǫ ≤ ‖φ‖2

ψ2

C2

,

P (
∣∣‖XT z‖22 −Nσ2‖z‖22

∣∣ > ǫNσ2‖z‖22) ≤ 2 exp

(
−C1C

2

2
Nǫ2

‖φ‖4

ψ2

)
. Thus, for an upper bound forP (Ac), we can follow the

straightforward arguments in [10, Lemma 5.1] and conclude that P (Ac) ≤ 2
(
12
ǫ

)J
exp

(
−C1C

2

2
Nǫ2

‖φ‖4

ψ2

)
. Thus by choosing

J ≤ C1C
2

2
Nǫ2

2‖φ‖4

ψ2
log(12/ǫ)

, we see thatP (Dc) ≤ 2 exp

(
− 1

2
C1C

2

2
Nǫ2

‖φ‖4

ψ2

)
. Finally, the fact thatΓ2 ≥ Λ2 follows from (9).
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