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Abstract

Theoretical analysis of randomized, compressive opesaifien depends on a concentration of measure inequalityhéor
operator in question. Typically, such inequalities qugrte likelihood that a random matrix will preserve the noofna signal
after multiplication. Concentration of measure results aell-established for unstructured compressive matrigepulated with
independent and identically distributed (i.i.d.) randontries. Many real-world acquisition systems, however, sugject to
architectural constraints that make such matrices imigactin this paper we derive concentration of measure bsiuod two
types of block diagonal compressive matrices, one in whitghkilocks along the main diagonal are random and independent
and one in which the blocks are random but equal. For bothstgbenatrices, we show that the likelihood of norm preseovati
depends on certain properties of the signal being meastredthat for the best case signals, both types of block diaigon
matrices can offer concentration performance on par wighr timstructured, i.i.d. counterparts. We support our riéécal results
with illustrative simulations as well as analytical and érigal investigations of several signal classes that aghliiiamenable
to measurement using block diagonal matrices. We also sisapplications of these results in ensuring stable embegsidor
various signal families and in establishing performancargntees for solving various signal processing tasks (asathetection

and classification) directly in the compressed domain.

I. INTRODUCTION

Recent technological advances have enabled the sensingt@iage of massive volumes of data from a dizzying array of
sources. While access to such data has revolutionized faldsas signal processing, the limits of some computing emdge
resources are being tested, and front-end signal acguigittvices are not always able to support the desire to measur
increasingly finer detail. To confront these challengesiyragnal processing researchers have begun investigaiimgressive
linear operatorsb : RN — RM for high resolution signals: € RY (M < N), either as a method for simple dimensionality
reduction or as a model for novel data acquisition deviced][3Because of their universality and amenability to asizly
randomized compressive linear operators (i.e., randomigaatwith M/ < N) have drawn particular interest.

The theoretical analysis of random matrices often reliethergeneral notions that these matrices are well-behaved ofio
the time and that we can bound the probability with which theyform poorly. Frequently, these notions are formalizeidai

some form of theconcentration of measure phenomeiih a powerful characterization of the tendency of cerfaimctions of
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high-dimensional random processes to concentrate sharplynd their mean. As one important example of this phenomen
it is known that for any fixed signat € RY, if ® is anM x N matrix populated with independent and identically disttéul
(i.i.d.) random entries drawn from a suitable distributitieen with high probability® will approximately preserve the norm
of 2. More precisely, for many random distributions by the probability that||®x(|3 — ||z||3| will exceed a small fraction
of ||z||3 decays exponentially in the number of measuremaiits

As we discuss in Section Il of this paper, such concentratesults have a number of favorable implications. Among
these is the Johnson-Lindenstrauss (JL) lemma [6-8], whiates that when applied to a finite set of poitsc RY, a
randomized compressive operatdrcan provide a stable, distance preserving embedding@ of the measurement space
RM . This enables the efficient solution of a broad variety ohalgorocessing problems by permitting these problems to be
solved in the low-dimensional observation space (such alnfinthe nearest neighbor to a pointin a database&)). Such
concentration results have also been used to prove thatircéaimilies of random matrices can satisfy the Restricssdnletry
Property (RIP) [9-11], which concerns the stable, distgmaserving embedding of families of sparse signals. In thigl fi
of Compressive Sensing (CS), the RIP is commonly used asfigisnf condition to guarantee that a sparse signahn be
recovered from the measuremenits.

Despite the utility of norm preservation in dimensionaligduction, concentration analysis to date has focused stimo
exclusively on dense matrices that require each measutamdre a weighted linear combination of all entriesaofDense
random matrices are often either impractical because ofdbeurces required to store and work with a large unstredtur
matrix (e.g., one with i.i.d. entries), or unrealistic asdals of acquisition devices with architectural constiajrteventing such
global data aggregation. For example, in a distributedisgrsystem, communication constraints may limit the depeid of
each measurement to only a subset of the data. For a secomplexapplications involving streaming signals [12, 13eaf
have datarates that necessitate operating on local sitpeksrather than the entire signal simultaneously.

In such scenarios, the data may be divided naturally intorelie subsections (or blocks), with each block acquiredavia
local measurement operator. To see the implications of ltisis model a signat € RN as being partitioned intd blocks
T1,72,...,2y € RV, and for eacly € {1,2,...,J}, suppose that a local measurement operator R — R collects the

measurements; = ®,z,;. Concatenating all of the measurements into a vegterR>: %, we then have
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In cases such as these, we see that the overall measurenazatoo@ will have a characteristic block diagonal structure.
In some scenarios, the local measurement operfanay be unique for each block, and we say that the resutbiritas a
Distinct Block Diagonal(DBD) structure. In other scenarios it may be appropriate@cessary to repeat a single operator

across all blocks (such thdt; = &, = --- = ®); we call the resultingd a Repeated Block DiagondRBD) matrix.



Starting from this block diagonal matrix structure, the maontributions of this paper are a derivation of conceiarat
of measure bounds for DBD and RBD matrices and an extenspimtion of the implications and utility of these bounds
for the signal processing community. Specifically, in Sattill we derive concentration of measure bounds both for DBD
matrices populated with i.i.d. subgaussiaandom variables and for RBD matrices populated with i.Géwussian random
variables. In contrast to the signal agnostic concentmatfomeasure bounds for i.i.d. dense matrices, these bourdsignal
dependent; in particular, the probability of concentmatitepends on the “diversity” of the component signalszs, ...,z
being well-matched to the measurement matrix (we make tieisige in Section IIl). As our analytic discussion and sufipg
simulations show, these measures of diversity have claaitiie interpretations and indicate that, for signalshnthe most
favorable characteristics, the concentration of meastobagbility for block diagonal matrices can scale exactifasan i.i.d.
dense random matrix.

Sections IV and V are devoted to a detailed investigatiorhefitility of these non-uniform concentration results fignsi
processing practitioners. Specifically, in Section IV, wéead our concentration results to formulate a modifiedigarsf the
JL lemma appropriate for block diagonal matrices. We alqada® how this lemma can be used to guarantee the performance
of various compressive-domain signal inference and pseiegslgorithms such as signal detection and estimatioverGihe
applicability of these results for providing performanaegantees in these tasks, a natural question is whether éherdarge
classes of signals that have the diversity required to madekkdiagonal matrices perform well. In Section V we provide

several examples of signal families that are particulaaiyofable for measurement via DBD or RBD matrices.

Il. BACKGROUND AND RELATED WORK

In this section, we begin with a definition of subgaussiandcan variables, describe more formally several existing

concentration of measure results for random matrices, evidw some standard applications of these results in tbetitre.

A. Subgaussian Random Variables

In fields such as CS, the Gaussian distribution is often iaddkr probabilistic analysis thanks to its many convenpop-
erties. Gaussian random variables, however, are just e@wadgase in a much broader classsabgaussiamlistributions [14,
15]. Where possible, we state our results in terms of sulsimmusandom variables, which are defined below using standar

notation from the literature.

Definition 1.1. [15] A random variablel is subgaussian iHla > 0 such that
(B|W[P)/P < a/p for all p > 1.

The quantity||WW ||, := sup,>, p~/2(E|[W|P)'/? is known as the subgaussian normiéf

We restrict our attention to zero-mean subgaussian randmmbles in this paper. Examples of such random variables
include zero-mean Gaussian random variables,Bernoulli random variables (each value with probabil%ty and uniform

random variables of-1, 1].

1Subgaussian random variables [14, 15] are precisely defin&eéction II-A, and can be thought of as random variablemfeodistribution with tails that
can be bounded by a Gaussian.



For a given subgaussian random varialife the variancé/ar(1V) is a constant multiple 0{(W||fb2 with 0 < \H’;;(”VZV) <V2;
Y2

the exact value oﬁ% depends on the specific distribution fidf under consideration (Gaussian, Bernoulli, etc.). We also
V2

note that in some cases, we will consider independent egalizs of a subgaussian random varialifethat are normalized to

Var(aW) _ o?Var(W) _ Var(W)
C TaWl2, = oZTWiz, — TWiE, -

have different variances. However, it is useful to note foatany scalarx > 0

B. Concentration Inequalities

Concentration analysis to date has focused almost exelysdn dense random matrices populated with i.i.d. entriasvd
from some distribution. Commonly, whel has sizeM x N and the entries are drawn from a suitably normalized digtion,

then for any fixed signat € RY the goal is to prove for any € (0,1) that
P(|[| @]l — llxl3] > ellz]3) < 2e~ M0, )

wherecy(€) is some constant (depending enthat is typically on the order of?. When discussing bounds such as (2) where
the probability of failure scales as X, we refer toX as theconcentration exponent

The past several years have witnessed the derivation ofeatmration results for a variety of (ultimately related) dam
distributions for®. A uniform concentration result of the form (2) was origigalerived for dense Gaussian matrices populated
with entries having mean zero and varia%e[lG]; one straightforward derivation of this uses standaitibounds for chi-
squared random variables [7]. Using slightly more compéidaarguments, similar concentration results were theivetbr
for Bernoulli matrices populated with rando% entries (each with probabilitg) and for a “database-friendly” variant
populated with randonﬁ%, 0, —\/%} entries (with probabilitieg 2, 2, 11) [7]. Each of these distributions, however, is itself
subgaussian, and more recently it has been shown that omifoncentration results of the form (2) in fact holds &dr
subgaussian distributions having variaryge[ll, 17]? Moreover, it has been shown that a subgaussian distribigiantually
necessary for deriving a uniform concentration result efftrm (2) for a dense random matrix populated with i.i.driest[17].

Concentration inequalities have also been derived in teealiure for certain structured (non-i.i.d.) dense rancdoatrices.
Examples include matrices populated with random orthogmwas [18] or matrices constructed by combining a struaure
matrix with certain random operations [19]. A concentmatimund also holds for the randomized RIP matrices [20, 24{ th

we discuss in the final paragraph of Section I1I-C below.

C. Applications of Concentration Inequalities

While nominally a concentration result of the form (2) apse® guarantee only that the norm of a particular signé
preserved in the measuremerits, in fact such a result can be used to guarantee that the iafamrequired to discriminate
x from other signalsmay actually be preserved ibz. Indeed, one of the prototypical applications of a con@iun result

of the form (2) is to prove that with high probabilit®, will preserve distances between various signals of interes

Definition 11.2. Consider two setd/,V c RY. We say that a mappin@ provides astable embedding oft, V') with

2This fact also follows from our Theorem IlI.1 by consideritige special case wherg = 1.



conditioningé if

(1= 0)u—vll3 < [[@(u—v)[3 < (1 +0)u—vll3 @)

holds for allu € U andv € V.

To relate this concept to norm preservation, note that foxedfi: € R", a randomized operator that satisfies (2) will, with
high probability, provide a stable embedding(¢%}, {0}) with conditioninge. As we discuss in Section IV, this fact is useful
for studying the performance of a compressive-domain $idetector [22].

However, much richer embeddings may also be consideredeXample, suppose that a signal family of inter@stt RY
consists of a finite number of points. If a randomized operétsatisfies (2) for each vector of the form— v for u,v € Q,
then it follows from a simple union bound that with probatyitat leastl — 2|Q|?e~*< (<), & will provide a stable embedding
of (Q, Q) with conditioninge. From this fact one obtains the familiar JL lemma [6-8], whstates that this stable embedding
will occur with high probability if M = O (%). Thus, the information required to discriminate betweamnais inQ
is preserved in the compressive measurements. This facteulufor studying the performance of a compressive-domain
nearest-neighbor search [16], a compressive-domain|sitpssifier [22], and various other signal inference sgae that we
discuss in Section IV.

In certain cases (particularly when dealing with randomlizperators that satisfy (2) uniformly over all signals R),
it is possible to significantly extend embedding results dayond the JL lemma. For example, for a ggtconsisting of
all signals with sparsityK’ in some basis foR", one can couple the above union bound approach with someeetany
covering arguments [10,11] to show thathif = O (K log(N/K)), then® will provide a stable embedding df, Q) with
high probability. This guarantee is known as the RIP in CS tom the RIP, one can derive deterministic bounds on the
performance of CS recovery algorithms such/asninimization [23]. Concentration of measure type resulisehalso been
used to prove the RIP for random matrices with subexporectiamns [24], and a concentration result of the form (2)
has also been used to probabilistically analyze the pednom of¢; minimization [17]. Finally, we note that one can also
generalize sparsity-based embedding arguments to thendese Q is a low-dimensional submanifold &~ [25].

In a different direction of interest regarding stable enthegs of finite collections of points, we note that severahats
have also recently shown that the direction of implicati@ween the JL lemma and the RIP can be reversed. Specifically,
it has been shown [20,21] that randomizing the column signs matrix that satisfies the RIP results in a matrix that also
satisfies the JL lemma. One of the implications of this is tnaomputationally efficient stable embedding can be acHieve

by randomizing the column signs of a partial Fourier matég-f28].

I1l. NON-UNIFORM CONCENTRATION OFMEASUREINEQUALITIES

In this section we state our concentration of measure medait Distinct Block Diagonal (DBD) and Repeated Block
Diagonal (RBD) matrices. For each type of matrix we providéesailed examination of the derived concentration ratek an
use simulations to demonstrate that our results do indegtireathe salient signal characteristics that affect thecentration

probability. We also discuss connections between the cdratéeon probabilities for the two matrix types.



A. Distinct Block Diagonal (DBD) Matrices

1) Analytical ResultsBefore stating our first result, we define the requisite natatFor a given signat € RV partitioned
into J blocks of lengthV as in (1), we define a vector describing the energy distdlbugicross the blocks af: v = ~v(x) :=
Mz1l3 N3 - ||:vJ||§}T € R’. Also, letting My, Ms, ..., M; denote the number of measurements to be taken of each
block, we define a/ x J diagonal matrix containing these numbers along the didgdda= diag M7, M>, ..., M ). Finally,

for a given signak: € RY’ and measurement allocatidvi, we define the quantities

2
J
iz (Sall)

—1/2~12 J o |03
[T A S A

J
Il Sl
[T A

Lo(z,M) := and T(z,M) := (4)

Using this notation, our first result concerning the conedign of DBD matrices is captured in the following theorem.

Theorem IIl.1. Suppose: € RY7, and for eachj € {1,2,...,J} suppose thafi/; > 0. Let¢ denote a subgaussian random
variable with meard, variancel, and subgaussian nortfy||,,. Let{®;}7_, be random matrices drawn independently, where
each®; has sizeM; x N and is populated with i.i.d. realizations of the renormatizandom variable\/—%, and let® be a

(Zj:l Mj) x NJ DBD matrix composed o{d)j}j:l as in (1). Then

2 2 2 . C3e? Coe
P(|[|@x|l5 — [|zl13] > ellz]|3) < 2exp{ —Ci min WFQ(I’M)’ Bk Coo(2,M) | o, (5)
2 P2

where(C; and C, are absolute constants.

Proof: See Appendix A.

From the tail bound (5), it is easy to deduce that the conagatr probability of interest decays exponentially as acfiom

2
of €2I'y(x, M) in the case wher® < e < %
16112, Toc (2,M)

> CQFQ(I,M)

and exponentially as a function ef'(z, M) in the case where
. One striking thing about Theorem I11.1 is that, in contrcssanalogous concentration of measure results
for dense matrices with i.i.d. subgaussian enttise concentration rate depends explicitly on the signhking measured.

To elaborate on this point, since we are frequently conckimgractice with applications whekeis small, let us focus on
the first case of (5), when the concentration exponent seatas;(x, M). In this case, we see that larger valueg'ofx, M)
promote sharper concentration pbz||% about its mearj|z||3. Using elementary inequalities relating tkig and ¢, norms,
one can bound the range of possiblevalues bymin; M; < T's(z, M) < ijl M;. The worst case’s(x, M) = min; M;
is achieved when all of the signal energy is concentrateal éx@actly one signal block where the fewest measurements are
collected, i.e., wheffjz;||3 = 0 except for a single indeX € {argmin; M;} (Where{arg min; M} is the set of indices where
{M,} is minimum). In this case the DBD matrix exhibits signifidgnivorse performance than a dense i.i.d. matrix of the
same sizeX:;.’:1 M;) x NJ, for which the concentration exponent would scale V@Ll M;. This makes intuitive sense, as
this extreme case would correspond to only one block of th® Digatrix sensing all of the signal energy. On the other hand,
the best casds(z, M) = Z;’Zl M;, is achieved when the number of measurements collectedafdr klock is proportional
to the signal energy in that block. In other words, lettitige(IM) represent the diagonal &1, whendiag(M) « ~ (i.e.,

3The uniformity of such concentration results comes not fithen fact that these matrices are dense but rather that thgicgulated with i.i.d. random
variables; certain structured dense random matrices (@sigrartial Fourier matrices) could have signal-dependententration inequalities.



whendiag(M) = C~ for some constanf’ > 0) the concentration exponent scales v@}]:l M; just as it would for a dense
i.i.d. matrix of the same size. This is in spite of the facttttree DBD matrix has many fewer nonzero elements.

The probability of concentration behaves similarly in tlee@nd case of (5), where the concentration exponent scitles w
I'so(z,M). One can bound the range of possillg, values bymin; M; < 'y (x,M) < Z}-]:1 M;. The lower bound is
again achieved whefpz;||3 = 0 except for a single indey’ € {argmin; M;}, and the upper bound again is achieved when
diag(M) o 7.

The above discussion makes clear that the concentratidarpemce of a DBD matrix can vary widely depending on the
signal being measured. In particular, DBD matrices cangperfas well as dense i.i.d. matrices if their measuremeotation
is well matched to the energy distribution of the signal. IBacfavorable event can occur eithéy by design, if a system
designer has some operational knowledge of the energybdistms to expect, orif) by good fortune, if favorable signals
happen to arrive that are well matched to a fixed system degignnote that even in the former situation when the general
energy distribution across blocks is known, this does nqtlynthat the designer has a priori knowledge of the signahdpei
sensed. Furthermore, even when significant informatioruabe signal (or a finite class of signals) is known, there may
still be much to learn by actually measuring the signal. Baneple, Section IV outlines several interesting signa¢iahce
problems that benefit from a norm-preservation guarantea fcmown signal (or finite signal family). Also, in the secooi
these situations, it may not be unreasonable to expect tetchmeasurement allocation will be well matched to an umkno
signal most of the time. For example, in Section V we descsibeeral realistic signal classes that are favorably mdtthe
fixed systems that have equal measurement allocatibhs={ Ms = --- = M}).

Two final comments are in order. First, while Theorem lll.1swderived by considering all signal blocks to be of equal
length N, one can see by a close examination of the proof that the shemeem in fact holds for signals partitioned into
blocks of unequal lengths. Second, it is instructive to abtarize the range af for which the two cases of Theorem IIl.1 are

relevant; we do so in the following lemma, which can be prousithg standard manipulations of the /5, and/., norms.

Lemma lll.1. If J > 2, the point of demarcation between the two cases of Theoremmalbeys

6113, - 2(v/J = 1) min; \/M Haﬁllw M) - ||¢>H%Lz_
CQ(J - 1) maX] 1/ j CQFQ (I M) - CQ
Examining the bound above, we note that foe> 2 it holds that 2 ‘F ) > Thus, as an example, whéd; = M; =

\/7

2
- = My, the first (“smalle”) case of Theorem Ill.1 is guaranteed to at least permit [O 19114

e val

when the measurement matrix is well-matched to the sigraladteristics, the first case of Theorem IIl.1 pernaitss large
Kl

as g, *

}. We note further that

, which is independent aof .

2) Supporting ExperimentaiVhile the quantityl’s (z, M) plays a critical role in our analytical tail bound (5), it isasonable
to ask whether this quantity actually plays a central rolgéhi@ empirical concentration performance of DBD matricee W
explore this question with a series of simulations. To begie randomly construct a signal of length24 partitioned into
J = 16 blocks of lengthV = 64. The energy distributiony of the signalz is plotted in Figure 1(a) (and the signalitself

is plotted in the top right corner). For this simulation, tesarediag(M) « ~ with integer values for thé//;, we begin by
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Fig. 1. (@) Test signal for concentration in a DBD matrix. The maingiglots the energy distribution when the signal is partitioned into
J = 16 blocks of lengthN = 64, the subpanel plots the length24 signalx itself. (b),(c) Test signals for concentration in a RBD matfhe
main panels plot the eigenvalue distributionfor Sig. 1 and Sig. 2, respectively, when partitioned itite- 16 blocks of lengthN = 64; the
subpanels plot the lengtt®24 signals themselves.
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Fig. 2. Comparisons of concentration behavior for various matnd aignal types; each figure shows the percentage of trials/iiich
(1 —¢) < ||@zll2/|lz]l2 < (1 + €) as a function of. (a) Performance of the dense and DBD matrices on the sitwoalrsin Figure 1(a).
(b) Performance of the dense and RBD matrices on the sighaersin Figure 1(b),(c).

constructingM (populated with integers) and then normalize each block @alomly generated signal to setaccordingly.

Fixing this signalz, we generate a series 8000 random64 x 1024 matrices® using zero-mean Gaussian random variables
for the entries. In one case, the matrices are fully densetandntries of each matrix have varianc4. In another case, the
matrices are DBD withliag(IM) « - and the entries in each block have varian¢é/;. Thus, we hav&'s(z, M) = ijl M;
and our Theorem 1.1 gives the same concentration bounthferDBD matrix as for the dense i.i.d. matrix of the same .size
For each type of matrix, Figure 2(a) shows the percentagdad$ for which (1 —¢) < ||®z||2/||z|l2 < (1 + €) as a function
of ¢, and indeed, the curves for the dense and DBD matrices aigtiimgliishable.

Finally, we consider a third scenario in which we constri@d0 randont4 x 1024 DBD matrices as above but with an equal
number of measurements in each block. In other words, wellsgfa= 4, and obtain measurement matrices that are no longer
matched to the signal energy distribution. We quantify tihismatch by noting thal's(z,4 - I;x;) = 32.77 < 2‘7.]:1 M;.
Again, Figure 2(a) shows the concentration success priiyabver these10000 random matrices. It is evident that these

mismatched DBD matrices provide decidedly less sharp auretion of || Pz ||s.

B. Repeated Block Diagonal (RBD) Matrices

1) Analytical Results:We now turn our attention to the concentration performarfcthe more restricted RBD matrices.

Before stating our result, let us again define the requisitation. Given a signat € R/ partitioned into.J blocks of length



N, we define the/ x N matrix of concatenated signal blocks
X =[xz zo - 4], (6)

and we denote the non-negative eigenvalues of¥he N symmetric matrix4A = X7X as{\;}¥ ;. We let\ = A\(z) :=
A1,.eey /\N]T € RY be the vector composed of these eigenvalues. Wa/let- M, = M, = --- = M denote the number of
measurements to be taken in each block. Finally, for a giigmasz € RV and per-block measurement rat¢, we define
the quantities

2
_ MH)\Hl and AOO(ZC,M) — MH)\Hl

Ao(z, M) :
A3 [RY[pS

- )
Equipped with this notation, our main result concerning ¢bacentration of RBD matrices is as follows.

Theorem I11.2. Supposer € RV, Let® be a randomM x N matrix populated with i.i.d. zero-mean Gaussian entriegitg

varianceo? = % and let® be anMJ x NJ block diagonal matrix as defined ifi), with ®; = @ for all j. Then
P([|@]l3 — [|z[3] > €llz]3) < 2exp {~Crmin (C5e*Az(z, M), CeAos(w, M)}, )

where(C; and C5 are absolute constants.

Proof: See Appendix B.

From (8), one can deduce that the concentration probalofifypterest decays exponentially as a functionediy(z, M)

Aoo (z,M)

e W emY)] and exponentially as a function ef\..(x, M) in the case where > Ae(@M) Thyg,

in the case wheré < e < CsAs(z, M) "

we see that the concentration rate again depends explisitihe signalz being measured.

Again, since we are frequently concerned in practice witpliaptions where: is small, let us focus on the first case of (8),
when the concentration exponent scales witl{z, M). It follows from the standard relation betweén and /5 norms that
M < Az(x, M) < M min(J, N). One extremej(z, M), is achieved whenl =} z;z] has only one nonzero eigenvalue,
implying that the blockse; are the same modulo a scaling factor. In this case, the RBDixreathibits significantly worse
performance than a dense i.i.d. matrix of the same &izex N J, for which the concentration exponent would scale with/
rather thanM . However, this diminished performance is to be expectedesthe sameb is used to measure each identical
signal block.

The other extreme)s(z, M) = M min(J, N) is favorable as long ag < N, in which case the concentration exponent
scales withM J just as it would for a dense i.i.d. matrix of the same size. thig case to occurd must haveJ nonzero
eigenvalues and they must all be equal. By noting that theemoneigenvalues off = X7 X are the same as those of the
Grammian matrixG = X X7, we conclude that this most favorable case can occur onlynwihe signal blocks are mutually
orthogonal and have the same energy. Alternatively, if thaad blocks span d -dimensional subspace &" we will have
M < Ay(x, M) < MK. All of this can also be seen by observing that calculatirgetyenvalues oft = X7 X is equivalent
to running Principal Component Analysis (PCA) [29] on thetrixaX comprised of theJ signal blocks. Said another way, an

RBD matrix performs as well as a dense i.i.d. matrix of the s@ime when the signal has uniform energy distribution acros
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its blocks (as in the DBD caseand has sufficient variation in the directions exhibited by thecks.

We note that there is a close connection between the diyer®asured’s(z, M) and Ax(z, M) that is not apparent at
first glance. For a fair comparison, we assume in this disosngbatM := diag(M, M, ..., M). Now, note that|\||? = |v||?
and also that|A3 = [Al} = IXXTI} = S0, llaills + 230, (eF25)? = |03 + 23, (27 2;)% Using these two

relationships, we can rewrit&;(z, M) as

MIIN||? M|v|1? M|y
hae < MR Ml MblR o
B~ MB+25,6Te? = ThiB

From this relationship we see thAt andT'; differ only by the additional inner-product term in the demoator of A,, and
we also see thah, = T'5 if and only if the signal blocks are mutually orthogonal. §more stringent condition for RBD
matrices—requiring more intrinsic signal diversity—ispexted given the more restricted structure of the RBD mesric

2) Supporting Experimentswhile the quantityAs(xz, M) plays a critical role in our analytical upper bound (8) on the
concentration tail probabilities, it is reasonable to adkether this quantity actually plays a central role in the iicgl
concentration performance of RBD matrices. We explore dfuisstion with a series of simulations. To begin, we randomly
construct a signal of lengti024 partitioned intoJ = 16 blocks of lengthN = 64, and we perform Gram-Schmidt
orthogonalization to ensure that theblocks are mutually orthogonal and have equal energy. Thzero eigenvalues of
A= XTX are shown in the plot of in Figure 1(b) (and the signal itself, denoted “Sig. 1”, is plotted in the top left corner).

As we have discussed above, for signals such as Sig. 1 wedshaukAx(x, M) = MJ, and Theorem IIl.2 suggests
that an RBD matrix can achieve the same concentration ratedense i.i.d. matrix of the same size. Fixing this signal, we
generate a series aH000 random64 x 1024 matrices® populated with zero-mean Gaussian random variables. Ircase,
the matrices are dense and each entry has varigf@e In another case, the matrices are RBD, with a sirgle64 block
repeated along the main diagonal, comprised of i.i.d. Ganssntries with variancé. For each type of matrix, Figure 2(b)
shows the percentage of trials for whith— ¢) < ||®z||2/|lx]2 < (1 +¢) as a function ok. As anticipated, we can see that
the curves for the dense and RBD matrices are indistingbisha

In contrast, we also construct a second signaldenoted “Sig. 2”) that has equal energy between the blockshhs
non-orthogonal components (resulting in non-unifokiy see Figure 1(c). This signal was constructed to ensurethiea
sorted entries of\ exhibit an exponential decay. Due to the non-orthogonalftghe signal blocks, we see for this signal
that Ao(z, M) = 21.3284 which is approximately3 times less than the best possible valueldf/ = 64. Consequently,
Theorem 111.2 provides a much weaker concentration expowlen this signal is measured using an RBD matrix than when
it is measured using a dense i.i.d. matrix. As shown in Fi@b3, we see that the concentration performance of the &rlkd

matrix is agnostic to this new signal structure, while th@amtration is clearly not as sharp for the RBD matrix.

IV. APPLICATIONS

As discussed briefly in Section 1I-C, a concentration of measnequality—despite nominally pertaining to the norm
preservation of a single signal—can lead to a number of gii@ea for problems involving multi-signal embeddings aigtal

discrimination. In this section, we extend our concentrabiounds to formulate a modified version of the JL lemma gpate
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for block diagonal matrices. We also survey a collection efnpressive-domain inference problems (such as detectidn a
classification) in which such a result can be leveraged. Koplgity we will focus on DBD matrices in this section, but

parallel results can be derived in each case for RBD matrideg&n the nonuniform nature of our concentration bouns, t

performance of algorithms for solving these problems wélpend on the signals under consideration, and so, in Se¢tiva

provide several examples of signal classes that are plantigdavorable for measurement via DBD or RBD matrices.

A. Stable Embeddings and the Johnson-Lindenstrauss Lemma

For a given signat € RV~ and measurement allocatidv, let us defind’y(z, M) := S}”’I\Q andl' o (z, M) := Fﬁ(z’x?.
j=1 7 j=1 7
Note that both quantities are upper boundedlbywith equality achieved for signals best matchedMb as discussed in
Section IllI-A. Using this notation, Theorem Il1.1 allows ts immediately formulate a version of the JL lemma apprdpria

for DBD matrices.

Theorem IV.1. LetU, V be two finite subsets &7, let ® be a randomly generated DBD matrix as described in Theoréd ||
with measurement allocatioNl, and letp € (0, 1) be fixed. If

J

S > log |U| + log V| +log(2/p) (10)
iZ ) — — )
j=1 Ci min (% mingev,vev o2 (u — v, M), % mingeyvev Noo(u — v, M))
2 2

then with probability exceedingy— p, ® will provide a stable embedding ¢t/, V') with conditioningd. Alternatively, under

the same conditions, with probability exceeding p the matrix® will provide a stable embedding ¢¥, V') with conditioning

2
~ I I log(2 1 1 log(2
5.V M, p) = 1P o ([ 108 |UL+10g V] +1og(2/p)  log U] +log [V| +log(2/p) ) (11)
Cy Ciminyeypey Fa2(u — v, M)" C1 mingey vey oo(u — v, M)

Proof: Taking the union bound over all € U andv € V and using (5), we then know that the desired (near) isometry
holds over all difference vectors— v except with probability bounded by

252
2|U||V]exp <—Cl min ( €0 min  Ty(u — v, M) G2 min T (u — U,M))) . (12)

—2- =
1lly, vetvev 19115, wevvev

Ensuring that (10) holds guarantees that the above failtoleability is less tha. The bound in (11) follows from (10) and

the observation thahin(ad?, b) = ¢ implies thatd = max (\/<, £). [ ]
Similar theorems can be formulated for RBD matrices, as agfbr stable embeddings of a signal subspace rather thiza jus

finite family of signals. Equation (10) gives a lower boundtba total number of measurements to guarantee a stable dmbed

with conditioningd. One can see that the denominator on the right-hand sideeeile withd? - min,cp, pev fg(u—v, M) when

19112, miny v, vev Foo (u—v.M) 1913, minuev vev Foo (u—v,M)

0<6< and With § - min,cyvey Loo (. — v, M) When§ > . Thus,

Co mingeu,vev D2 (u—v,M) Comingev,vev D2(u—v,M)

focusing just on cases whedeis small, in order to guarantee a stable embedding with a ratel@umber of measurements,
we requirefg(u — v, M) to be sufficiently close td over allu € U andv € V. Equivalently, ifTs(u — v, M) is uniformly
close to)_ M; over allu € U andv € V, the conditioningg provided in (11) is comparable to what would be achieved with
a dense i.i.d. random matrix of the same size. In Section Vpweide several examples of signal classed/oand V' for

which it may be reasonable to expect such uniformly favarabl (or As) values.
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The attentive reader may notice that the failure probabitit (12) is in fact loose, since we have bounded the sum of
the individual failure probabilities byU||V| times the worse case failure probability. Due to the exptiakform of these
probabilities, however, it seems that the worse case pilityabeven if it is rare—will typically dominate this sum.Herefore,
in most applications we do not expect that it is possible tmificantly improve over the bounds provided in (12) and thus
(10). Unfortunately, it appears that this fact would forki@ derivation of a sharp RIP bound for block diagonal magigia
the elementary covering arguments mentioned briefly ini@edt-C.* However, such an RIP result, which would guarantee
the stable embedding of an infinite family of signals that sparse in a particular basis, is not necessary for problbats t
require embeddings of only finite signal families or appraigr for problems where the signals may not all be sparseén th
same basis (e.g., using the RIP to derive embedding guasasteh as Theorem IV.1 could require many more measurements
than using a concentration bound).

Indeed, ensuring a stable embedding of even a finite sigaakdb very useful for guaranteeing the performance of many
types of compressive-domain signal inference and praegsdgorithms. In the following subsections, we explore tanonical
tasks (detection and classification) in detail to show hamali characteristics affect one’s ability to solve thesgbfgms using
measurements acquired via a block diagonal matrix. Penfgytasks such as these directly in the measurement spaoalyot
reduces the data acquisition burden but can also reduceothputational burden far below what is required to solve ¢hes
problems in the high dimensional ambient signal space.

Before concluding this subsection, we briefly note thatetame several other tasks (aside from detection and clad&ifi}
that can be performed in the measurement space when a blagkrail matrix provides a stable embedding of a finite signal
family. For one example, when a block diagonal matbixprovides a stable embedding @, {«}) for some signal database
S and query signat, it is possible to solve the approximate nearest neighbalolpm [16] (finding the closest point i§ to
x) in the compressed domain without much loss of precisiorother potential application in compressive signal proogss
involves a simple compressive-domain linear estimatof.[8zhen @ provides a stable embedding of, ¥ U —X’) for some
sets£ and X, then for any? € £ andz € X, we can estimate the value ¢f, z) from the measurement®/, z). Signal
families £ and X whose sum and difference vectofst x have favorabld’; values will have favorable and predictable
estimation performance. Finally, a similar result alsacdssed in [22] shows thdiltering vectors in order to separate signal

and interference subspaces is possible when the diffeneaters between these subspaces are stably embedded by

B. Signal Detection in the Compressed Domain

While the canonical CS results center mostly around recoctitg signals from compressive measurements, there is a
growing interest in forgoing this recovery process and amsw certain signal processing questions directly in thrapressed
domain. One such problem that can be solved is binary detectthere one must decide whether or not a known template
signal was present when the noisy compressive measuremergscollected [22,31-33]. In particular, lete RV denote a

4As an aside, since the original submission of this manuscsipme of the authors (with an additional collaborator)ehatiown that using tools from
the theory of empirical processes [28], it is possible tovéeRIP bounds for DBD matrices [30] that are in fact dependenthe basis used for sparse
representation of the signals. This does not make the pressults obsolete, however: neither our concentratiomnswnor our measurement bound (10)
follow as a consequence of the RIP result.
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known signal, and suppose that from the measurement vegctoe wish to decide between two hypotheses:
Ho: y=2z or Hi: y=>Ps+z,

where® is a known compressive measurement matrix, angl a vector of i.i.d. zero-mean Gaussian noise with variartce

If one were designing a measurement matrix specifically fier gurpose of detecting this signal, then the optimal chofce

® would be the matched filter, i.e® = s. However, implementing a measurement system that is desigpecifically for

a particulars restricts its capabilities to detecting that signal onlfiet could require a hardware modification every time

changes. A more generic approach would be to dedigandomly (perhaps with a block diagonal structure out ofessity

or due to efficiency considerations) and then use the adjureasurementg to test for one or more candidate signals
Given the measurements a Neyman-Pearson (NP) optimal detector [22] maximizesptiodability of detectionPp :=

P {H, chosen|H, is true}, subject to a given limitation on the probability of a faldaren, Pr = P {#; chosen|H, is true}.

The optimal decision for this problem is made based on whethaot the sufficient statistic := 7 ®s surpasses a threshold

K, i.e., t:f k, wherex is chosen to meet the constraiRt < « for a specifiedx. As can be seen from the analysis in [22],

the perfo;mance of such a detector dependd|®n||.. In effect, if ® “loses” signal energy for some signals the detector

performance will suffer, and i “amplifies” signal energy for some signals the detector grantince will improve. A stable

embedding of any signal the detector may encounter, howguarantees consistent performance of the detector.

Theorem IV.2. Suppos& is a finite set of signals and Iét be a randomly generated DBD matrix as described in Theorédh 11
with a number of measurements denoted by the madiixix 0 < p < 1 and picka such thatPr < «. Then with probability

exceedingl — p, any signals € S can be detected with probability of detection bounded by

Il

p ) < Po() £Q <Q1<a> — 14380} M. p) %) ,

Q <Q1(a) - \/1 - S(Sv {0}7 M? P)

whereQ(a) = \/% L e~ du and wheres (S, {0}, M, p) is as defined in(11).

The proof of this theorem follows by combining the fact thas (o) = Q (Q—l(a) — @) (see [22]) with (11) and the
monotonicity of the functiorQ(-). While achieving the best possibl®, for a givenPr is of course desirable for a detector,
another very important consideration for a system designtre reliability and consistency of that system. Largetflatons
in performance make it difficult to ascribe meaning to a patér detection result and to take action with a certainllefe
confidence. The theorem above tells us that the consistdrbg aetector performance is tied to how reliadlypreserves the
norm of signals inS. Examining this relationship, it is clear that more favdeatalues ofl';(s, M) for a signal class result
in tighter bounds orPp («) and therefore in stronger consistency guarantees for tteetde

To illustrate this fact with an example, we create a singleDDBeasurement matrig € RM7*~7 having an equal number
of measurements/; = M per block. We takel/ = 4, J = 16 and N = 64, and we draw the nonzero entries ®fas i.i.d.
Gaussian random variables with varianigé/. We test the detection performance of this matrix by dravlidg00 unit-norm
test signals randomly from two classés;, in which signals have uniform energy across their blocks, &, in which signals

have decaying energy across their blocks. We choose the mai@ances? such that each test signalhas a constant signal-



14

frequency

0 5 10 15 20

M

CY (b)

Fig. 3. (a) Histogram ofPp for 10000 signals with uniform energy across blocks (sigfessS: ) and for 10000 signals with decaying energy
across blocks (signal clags) when measured with a DBD matrix. The compressive NP datéete the constrain®r < o = 0.1. (b) Plots
of the probability of misclassificatioRr over a range of values dff = 1,--- ,20. The first class of signalS, are sparse in the frequency
domain. The second class of signdisare nonzero only on a single block in the time domain. WRiledecreases with increasing for both
classes of signals, classification performs better for igeags inS., which are more amenable to a stable embedding with a DBDxmatr

g

to-noise ratio of10log;, (@) = 8dB. Because of the construction &f, I';(s, M) attains its maximum value a¥/.J for
all signalss € Sy, resulting a small conditionina and a tight bound orPp. In contrast,S; will have a smaller value of
T'2(s, M), resulting in larger values of and much looser bounds df,. We choose the maximum probability of failure to
be a = 0.1 and use the equatioRp(a) = Q (Q—l(a) — @) to calculate the expectell, for each signal.

Figure 3(a) shows the histogram Bf, for the signals inS; andS, when measured with a DBD matrix. We see that for the
uniform energy signals i5;, the detector performance is indeed tightly clustered rmdd®p = 0.9; one can see that this is
the point of concentration predicted by Theorem V.2 si@cé@—l(o.l) — \/W) ~ 0.8907. Thus for this class of signals,
the detector performance is consistent and we can be asstieethvorableP, when using the detector for all signals .
However, when using the DBD matrix on the signal cl&sthe P values are widely spread out compared to thoseSfor
despite the fact that the averafg is nearly the same. Although some individual signals mayetabove average performance
because the measurement matrix happened to amplify theigies, other signals may have very poor performance becaus
the measurement matrix significantly attenuated theirgt@er Thus this experiment shows how the signal statisffestahe

performance reliability in compressive detection taskemthe measurements matrices have block diagonal structure

C. Classification in the Compressed Domain

Rather than determining the presence or absence of a fixetidea@ signal, some scenarios may require the classificatio
of a signal among multiple hypotheses [22, 32]. In partiGuét s, s, . . ., sg € RY7 denote known signals, and suppose that

from the measurement vectgr we wish to decide betweeR hypotheses:
Hi:y=s;+2z, fori=1,2,... R,

where® is a known compressive measurement matrix, angl a vector of i.i.d. zero-mean Gaussian noise with variarice
It is straightforward to show that when each hypothesis isaly likely, the classifier with minimum probability of er
selects the hypothesis that minimizes the sufficient satls := ||y — ®s;||3. As can be imagined, the performance of such

a classifier depends on how wel preserves pairwise distances among the sigfals. If a situation were to occur where
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[Psp—Psqll2

Isp—sqll2

embedding can again be particularly useful for guaranteeansistent and predictable performance.

was small for some, g, thens, could easily be mistaken far, in the measuremenis Therefore, having a stable

Theorem IV.3. Let S denote a fixed set of signals wil| = R < oo and fix0 < p < 1. Supposeb is a randomly generated
DBD matrix as described in Theorem IIl.1 with a number of nueasents denoted by the matid. Assume we receive the

measurementg = ®s;« + z for somei* € {1,2,..., R} and z ~ N'(0,0%I). Then, with probability at least

- ($) - K (1 —'S(S,S,M,p))

802 — 2

we havei* = argmin;c (s, gy t; and thus the signad;- can be correctly classified. Hewé:= min, ; [|s; — s;||» denotes the

yeeey

minimum separation among the signalsSnand 5(8,8, M, p) is as defined in(11).

The proof of this theorem again follows by combining bounasrf [22] with (11). From this theorem it follows that, 4
is a block diagonal matrix, signal familie€$ whose difference vectors, — s, have favorabld’; values will have consistent
and predictable classification performance.

The following simulation demonstrates the potential fagictable classification of signals acquired using congiveslock
diagonal matrices. We again consider DBD matrices havingaqral number of measurements; = M per block, and we
consider signals having = 16 blocks of lengthV = 64. We first create a favorable class of unit-norm sigdalsvith R = J
elements such that each signal has jusbnzero DFT coefficients at randomly chosen frequencie&nBure that the signals
are real, we restrict the coefficients on conjugate pairgaxuencies to have complex conjugate values. We also etisatre
no frequencies are repeated amongst the signaff .ilAs we show in Section V-B, frequency sparse signals witidoanly
selected frequency support will have larfe values with high probability; therefore the difference aofyawo signals from
&1 will also have a largd’s value with high probability. We also create a second classnitnorm signalsS, with R = J
elements such that each sigsalfor » = 1,2,..., R has nonzero (and randomly selected) values only on-its block and
is zero everywhere else. Difference signals from this cleiishave smallT’; values since their energies across the blocks are
not uniform.

For eachM ranging froml to 20, we createl 000 instances of a random DBD matrik of size M J x N.J. For each® and
for each signal clas§; andS,, we identify the indices, io that minimize||®s;, — ®s;, ||2. The signals corresponding £,
ands;, will be among the most difficult to classify since they eackéha close neighbor (eithdrs;, or ®s;,, respectively)
after projection by®. Then for each of these signafs;; } ;-1 2, we createl000 noisy measurement vectogs= ®s;, + z
with z ~ N(0,02I) and witho chosen such that0 log;, (g—z) = 15dB. Finally, we letp = argmin¢; be the output of the
classifier and calculate the probability of misclassifwatiPr (M), for eachM as the proportion of occurrences o~ i, or
p # iz, respectively, over the combind®00 instances of noise and 1000 instances ofb.

Figure 3(b) plotsPg (M) for both classes of signals. As expected, the curveSiolis lower than that forS, since the
signals inS; are expected to have a stable embedding with a tighter ¢onitiy. Both curves also show a decreasing trend
for increasingM (although it is much more obvious for signal claSg) as should be expected. Lastly, we see tRatM)

saturates at a certain level with increasiig This is also predicted by Theorem IV.3, where the smallpgeu bound that can
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be provided forPg is given by% exp (—Sd—z) > 0. With the parameters used in this experiment, it can be b that

o2

the smallest theoretical upper bound 8y is approximately.144. This shows that Theorem V.3 may be slightly pessimistic.

V. FAVORABLE SIGNAL CLASSES

The various compressive signal processing guaranteesreesin Section IV are built upon the premise that a DBD matri
provides a stable embedding of the signals of interest; aBave noted, these arguments can be extended to RBD matsices a
well. Our analysis has also indicated that such stable edibgsl are most easily realized with matrices that are wetched
to the energy distribution (and sometimes orthogonalifyjh@ signal blocks. In many applications, however—perhimps
the sake of generality, or because little advance knowleddke signals is available—it may be most natural to use alfixe
and equal allocation of measurements. Fortunately, there aumber of interesting signal families (and, in some satbe
corresponding difference signals) that provide favordbleralues for “uniform” DBD matrices where all{; are equal (for all
J,» we supposeé\/; = M for someM) and in some cases also provide favorahlevalues for RBD matrices. In this section

we survey several such examples.

A. Delay Networks and Multiview Imaging

One favorable signal class for uniform DBD and RBD matricas occasionally arise in certain sensor network or multi-
view imaging scenarios where signals with steeply decagirtgcorrelation functions are measured under small geations.
Consider for example a distributed sensor network/o$ensors where we would like to detect the presence of a known
signal given the observations from each sensor. Due tod@niesources, each sensor uses random measurement matrices
d1,Po,..., D to efficiently capture the underlying information with ordyfew random projections. Suppose that the received
signalszy, zo,...,z; € RY represent observations of some common known underlyingptyye signakw € RV, However,
due to the configurations of the sensors, these observattms with different delays or translations. More formailse might
consider the one-dimensional delay parameders,, ..., € Z and have that for each z;(n) = w(n—4d;). Then, denoting
the measurements at sengoasy; = ®;x; it is straightforward to see that the overall system of eiguatcan be represented
with a DBD matrix, or whend; = &, = ... = ®&; with an RBD matrix.

Assumingw is suitably zero-padded so that border and truncationaattifcan be neglected, we will haje; |2 = ||w||2
for all z;; this givesTs([2] 21 ---2%]T, M) = MJ, which is the ideal case for observation with a uniform DBDtrixa
This suggests that the outputs from distributed networkesys can be highly amenable to the sort of compressive-domai
signal inference and processing tasks described Section IV

Moreover, the correlations among the componentgan be characterized in terms of the autocorrelation fandi,, of
w: we will have (z;, ;) = ij:l zi(n)z;(n) = 27]:[:1 w(n — §;)w(n — d;), which neglecting border and truncation artifacts
will simply equal R,,(|9; — d,]). Therefore, signalss that exhibit strong decay in their autocorrelation functigill be natural
candidates for observation with RBD matrices as well. Fameple, equation (9) gives

M J2||wll;

Ao([zT 2k - 21T M) = .
b ! Tlwllz 42355 5 Ru(10: = 0;1)?

When R,,(|6; — §;]) is small for mosti and j, the quantityAs([z] 21 ---2%]7, M) is near its optimal value ol .J.



17

-
e

—8aS=5 —8J =64

08 —© S=30 n} 0.8 —© J =200 ®
—x S=64 —x J =400
> >
20.6 q 2 0.6
] S
g g
L 04 r 0.4
0.2

0 20 40 60
Ty/M
@) (b)
Fig. 4. Histograms of the normalized quantify for frequency sparse signals. (a) The distributio:ﬁﬁffor randomly generated frequency
sparse signals of lengthi’ = N x J = 64 x 64 for sparsity levelsS € {5, 30, 64}. Note that% accumulates near its upper boundjof 64
for all three sparsity levels. (b) The distribution}@% for randomly generated frequency sparse signals $ith 5 and the number of signal
blocksJ € {64,200, 400}. Note thatM 2. accumulates near its upper bound of 1.

B. Frequency Sparse Signals

Signals having sparse frequency spectra arise in manyaiff@pplications involving communications intelligergyestems
and RF sensor networks. Based on time-frequency uncsrtpiiriciples and the well-known incoherence of sinusoidd an
the canonical basis (i.e., “spikes and sines”) [34, 35]s ihatural to expect that most signals that are sparse in ¢ogéncy
domain should have their energy distributed relativelyfannily across blocks in the time domain. In the following dinem,
we make formal the notion that frequency sparse signalsnaieed likely to be favorable for measurement via uniform DBD

matrices, producing values @%(x, M) within a log factor of its maximum possible.

Theorem V.1. Let N, 5 > 1 be fixed, suppos&”’ = NJ > 512, and letM = diag{M, M, ..., M} be a DBD measurement
allocation with M fixed. LetQ C [1, N’'] be of sizeS < N generated uniformly at random. Then with probability atdea

1 — O(J(log(N"))Y/2(N")~#) 5 every signak: € CV" whose DFT coefficients are supported @rwill have:?

0.0779 1

To(x,M) > MJ - min (13)
(B+1)log(N ( ﬁ‘f‘l 10gN’+(IOgN/)2)
Proof: See Appendix C.
Note that asV’ grows, the lower bound oh,(z, M) scales asL which (treating the fixed valu®&’ as a constant)

4(N/

is within log*(N’) of its maximum possible value d¥/.J. Thus the concentration exponent foostfrequency sparse signals
when measured by a uniform DBD matrix will scale with\/.J/ log4(N’) for smalle. Also note that the failure probability
in the above theorem can be bounded®y-2—) since bothJ and,/log(N") are less thanV’.

To explore the analysis above we use two illustrative sitmuia. For the first experiment, we generate 5000 signals wit
length N/ = NJ = 64 x 64 = 4096, using three different sparsity levefs € {5,30,64}. The DFT coefficient locations are
selected uniformly at random, and the corresponding nenzeefficient values are drawn from the i.i.d. standard Gauass

distribution. Figure 4(a) plots the rat?&%, showing that this quantity is indeed near the upper bounfl-ef64, indicating

5The O(-) notation is with respect t&v’. With the component lengthV fixed, this means that only the number of blockés growing with increasingV’.
SWe consider complex-valued signals for simplicity and itfain the exposition. A result with the same spirit that f®bdith high probability can be
derived for strictly real-valued signals, but this comeshat cost of a more cumbersome derivation.
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a favorable energy distribution. This gives support to e that the theoretical value ©%(x, M) predicted in Theorem V.1
does not depend strongly on the exact valu& ofFor the second experiment, we fix the sparsityat 5 and vary the signal
block lengthJ € {64, 200,400} (and thus the total signal lengtN’ = N.J changes as well). For eachwe generate 5000

“M) it is clear that this value

random signals in the same manner as before and plot in Ffethe distribution of%
concentrates near its upper boundlpshowing the relative accuracy of the prediction tﬁ?tscales linearly with increasing
J. While some of the quantities in Theorem V.1 appear pestor(is.g., the scaling witrhog4(N’)), these simulations confirm
the intuition derived from the theorem that frequency spasiginals should indeed have favorable energy distribsitenmd
therefore favorable concentration properties when medswith DBD matrices.

Because differences between frequency sparse signalseanséelves sparse in the frequency domain, it follows imatetyi
that not only do frequency sparse signalhave favorabld’s(xz, M) values for uniform DBD matrices, but also that most
differencesr;, — x4 between frequency sparse signals have favorigf(e; —z2, M) values. Thus, when measured by a uniform
DBD matrix, many families of frequency sparse signals akelyi to perform favorably and predictably in the compressiv
signal processing scenarios outlined in Section IV.

Importantly, Theorem V.1 can also allow us to guarantee thbles embedding of certain infinite collections of frequenc
sparse signals. In particular, for any sparse sugpam which (13) holds uniformly, one can apply standard caxgearguments
(as discussed briefly in Section 11-C) to guarantee that withoderate total number of measuremevitg = O (% 10g4(N')),

a uniform DBD matrix will simultaneously approximately gerve the norm of all frequency signals supportedtorirhis
fact allows one to consider compressive-domain interfegerancellation (as discussed in Section IV-A and in [22ZX)fra

set of frequency sparse signals, where the set of possitadarers live in a known subspace of frequency sparse Isigna

C. Difference Signals

In applications such as classification, we require a stainleeglding of difference vectors between signals in a cesiginal
class. It is interesting to determine what signal familiesaddition to frequency sparse signals will give rise to atéhce
signals that have favorable valuesIof (for uniform DBD matrices) o\, (for RBD matrices).

We provide a partial answer to this question by briefly exéfyiply a signal family that is favorable for measurement via
uniform DBD matrices. Consider a s@tc R’¥ of signals that, when partitioned intbblocks of length\V, satisfy both of the
following properties: {) eachz € @ has uniform energy across theblocks, i.e..|[z1]]3 = [[22]]3 = -+ = [|zs|13 = L||=[3,
and (i) eachz € Q has highly correlated blocks, i.e., for somes (0,1], (z;,2;) > a%|z|3 for all i,j € {1,2,...,J}.
The first of these conditions ensures thaMf = diag{M, M, ..., M}, then eachr € Q will have I's(2, M) = M J and thus
be highly amenable to measurement by a uniform DBD matride $&cond condition, when taken in conjunction with the
first, ensures that all difference vectors of the farm y wherez, y € @ will also be highly amenable to measurement by a

uniform DBD matrix. In particular, for any, j € {1,2,...,J}, one can show that

4v2||z]|2]lyll2vT = a
J 9

i = yill3 = llz; — ;]3] <

meaning that the energy differences in each block of thesiffce signals can themselves have small differences. One
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Fig. 5. Plots of the energy distributions of individual videos aridteir differences for the best video pair and the worst @igair among
all possible(g) possible video pairs. (a) The difference of the video paridge close” and “Bridge far”, giving the best value of(z —
y, M) /M = 149.9988. (b) The difference of the video pair, “Coastguard” and “B#&merica”, giving the worst value @f;(x — y, M)/M =
148.7550.

implication of this bound is that as — 1, T's(x — y, M) — M J.

Signal families of the form specified above—with uniform egeblocks and high inter-block correlations—may gengrall
arise as the result of observing some phenomenon that \&oiety as a function of time or of sensor position. As an emgglr
demonstration, let us consider a small database of eightwadd video signals frequently used as benchmarks in tkdeo
compression community, where we will treat each video frame signal block.We truncate each video to have= 150
frames, each of siz&v = 176 x 144 = 25344 pixels, and we normalize each video (not each frame) to haiteemergy.
Because the test videos are real-world signals, they do aa# perfectly uniform energy distribution across the fraptmut

we do observe that most frame energies are concentrateddaﬁou: 0.00667.

Video name| Akiyo Bridge close| Bridge far | Carphone| Claire | Coastguard Foreman| Miss America
max(x;,z;) | 0.00682 0.00668 0.00668 | 0.00684 | 0.00690 | 0.00742 | 0.00690 0.00695
min(x;,z;) | 0.00655 0.00664 0.00665 | 0.00598 | 0.00650 | 0.00562 | 0.00624 0.00606
Ty/M 149.9844| 149.9998 | 149.9999 | 149.9287| 149.9782| 149.2561 | 149.9329| 149.9301
TABLE |

The maximum and minimum inner products between all pairgstiratt frames in each video, and the quantity/ M for each video. The best
possible value of 2 /M is J = 150.

For each video, we present in Table | the minimum and maxinmmeri productsz;, z;) over alli # j, and we also list the

w for each video. As we can see, the minimum inner product foheadeo is indeed quite close to 0.00667,

guantity
suggesting from the arguments above that the pairwiseréiftes between various videos are likely to have highlyaunif
energy distributions. To verify this, we compute the quan%2 for all possible(g) pairwise difference signals. As we are
limited in space, we present in Figure 5 plots of the enertjig$3, ||y;]|3, and||z; — y;||3 as a function of the frame index

j for the pairs of videos:, y that give the best (highest) and the worst (smallest) vadxﬁe%“m&iyw We see that even the
smallest% value is quite close to the best possible vaIue%)f: 150. All of this suggests that the information required to
discriminate or classify various signals within a familychuas a video database may be well preserved in a small nurhber o

random measurements collected by a uniform DBD matrix.

"Videos were obtained from http://trace.eas.asu.eduw/yuv/
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D. Random Signals

Our discussions above have demonstrated that favoiablalues (for uniform DBD matrices) anfl; values (for RBD
matrices) can arise for signals in a variety of practicahst®s. This is no accident. Indeed, as a blanket statertéstirue
that a large majority of all signals € R7Y, when partitioned into a sufficiently small number of blocksand measured
uniformly, will have favorable values of bothi; and A;. One way of formalizing this fact is with a probabilistic atenent

such as that given in the following lemma.

Lemma V.1. Let ¢ denote a subgaussian random variable with mean 0, variarfceand subgaussian norr||,,, and

2
supposer € RY7 is populated with i.i.d. realizations ef. Let M = diag{M, M, ..., M} with M fixed. Picke < % and

2 2
suppose that/ < m, where(C}, Co are absolute constants as given in Theorem Ill.1. Then, pitthability at
Y2
2 2
leastl — 2 exp (—%% , we have
P2

1_ 2
Doz, M) > Ay(z, M) > M + M (1 - 6) (J - 1).
€

Proof: See Appendix D.

We see from Lemma V.1 that when random vectors are partiiagm® a sufficiently small number of blocks, these signals
will have their norms preserved giving rise Ia(z, M) and As(z, M) values close to their optimal value @f.J. To give
some illustrative numbers, numerical simulations shovied dver 10000 random draws of Gaussian i.i.d. signals with 16
and N = 64 the average value dfy(z, M)/M was 15.5 and the average value fof(xz, M)/M was 12.6, which are both
large fractions of the maximum possible valuelof We also note that by using the same argument we can showhthat t
differences of random signals will exhibit larg® and A, values. One possible use of this lemma could be in studyiag th
robustness of block diagonal measurement systems to noifeeisignal. The lemma above tells us that when restrictions
are met on the number of blocks, random noise will tend todyi#bcks that are nearly orthogonal and have highly uniform

energies, thereby guaranteeing that they will not have greergy amplified by the matrix.

VI. CONCLUSION

In this paper we have derived concentration of measure aliigs for compressive DBD and RBD matrices. Our experi-
mental results confirm what our theoretical bounds sugdfest:the actual probability of concentration depends ondingree
of alignment between the allocation of the measurementstlamanergy distribution (and sometimes orthogonality) e t
signal blocks. However, in situations where one can opgnitze measurement allocation in anticipation of certaimaig
characteristics or where a fixed system may be measuringircdayvorable classes of signals, we have shown that thdyhigh
structured DBD and RBD matrices can provide concentrateniopmance that is on par with the dense i.i.d. matricesnofte
used in CS. We have highlighted a number of compressive Isfeaessing applications that benefit from having a stable
embedding of a finite signal family, and we have presented diffad JL lemma for block diagonal matrices that reflects the
number of measurements required to ensure such a stableddimipeFinally, we have surveyed a number of signal classes

whose blockwise energy distribution and/or orthogonatigkes them well-suited to measurement via uniform DBD roesri
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or via RBD matrices. Despite not leading to state-of-theR&lP bounds, we conclude that our nonuniform concentratsnlts
can provide a valuable tool for understanding and possibtigating the potential pitfalls of working with highly catrained
block diagonal matrices.

There are many natural questions that arise from thesetseantl are suitable topics for future research. For example,
it would be natural to consider whether the concentratigulte for Gaussian RBD matrices could be extended to more
general subgaussian RBD matrices (to match the distributsed in our DBD analysis), or whether strong RIP results can
be established for RBD matrices. Also, as more applicatamasidentified in the future, it will be important to examiret
diversity characteristics of a broader variety of signaksks to determine their favorability for measurement Mekodiagonal
matrices. Additionally, it would be interesting to examinbether the concentration of measure result for RBD matrioeild
prove useful in the analysis in the multiple measurementoredIMV) problem [36, 37] that arises, for example, in array
signal processing.

As a final note, we briefly mention that our concentration lsufor block diagonal matrices can actually be useful for
studying certainother types of structured matrices that arise in linear systenpdigtions. In particular, these results can
be applied to derive concentration bounds and RIP resuttedmpressive Toeplitz matrices that arise in problems agh
channel sensing and for compressive observability matiibat arise in the analysis of linear dynamical systemshoAlgh

space limitations prevent us from detailing these resudte hwe refer the interested reader to [38, 39] for more médion.

APPENDIXA: PROOF OFTHEOREMIII.1

Proof: Let y = ®z. For each matrix®;, we let[®,].

;. denote then'™ entry of thei'" row of ®;. Further, we lety; (1)
denote the*® component of measurement vecigr and we letz;(n) denote then'® entry of signal blocke;.

N
n=1

We begin by characterizing the point of concentration. Oae write y;(i) = >, _; [®;]. , ;(n), and so it follows that
2
Ey:(i) = E (ij:l (@], :z:j(n)) . Since the[®;], = are zero-mean and independent, all cross product termsoaee

zero, and therefore we can wriy’ (i) = EYN (@7 a2(n) = o?||lz;113 = 57 ll=;1|3. Combining all of the measurements,
J

in J
J M; . J M lz;l3 J
we then have|ly(3 = 37, Y1 By2(i) = S, 00 Ll = 527 a3 = |13
Now, we are interested in the probability thatty||3 — [|=(|3| > e||z||3. SinceE||y[|3 = |z|3, this is equivalent to the

condition that||[y[|3 — Elly[|5| > ¢Elly3. For a givenj € {1,2,...,J} andi € {1,2,..., M;}, all {[®;], })_, are i.id.

subgaussian random variables with subgaussian norms tgjiale—||,, = 91+ From above, we know that; (i) can be
N MR v/ M;

expressed as a linear combination of these random varjabikbsweights given by the entries af;. As with Gaussian random
variables, linear combinations of i.i.d. subgaussian ocamdariables are also subgaussian. In particular, from [é8ama 9]
it follows that eachy; (i) is a subgaussian random variable with subgaussian fjgra)||,, < Cl%”(ﬂj”g, wherec; is an
absolute constant.

In order to obtain a concentration bound f@yl|3, we require the following important theorem regarding swhsquares

of subgaussian random variables.

Theorem A.1. [40] Let X;,..., X be independent subgaussian random variables with sub@aussrms|| X;|, for all
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i=1,...,L. LetT = max; | X;||3,. Then for every > 0 and everya = (ay,...,ar) € R*, we have

>l <90 { Oy mi < t ! >}
= = Xp 4 —C1Inin ) ’
16T2||al|3” 4T || al|o

L
> ai(X7 —EX})
=1

ol

where(C; > 0 is an absolute constant.

Proof: From [40, Lemma 14], we know that eacty, ..., X7 is a subexponential random variable with subexponential
norm || X?||4, <2[Xil7,. For eachi =1,2,..., L, we defineY; = X? — EX? is a zero-mean subexponential random, and

from [40, Remark 18], it follows thafY;||,, < 2|/ X?||y.. The theorem follows by applying [40, Proposition 16] to twem

SF L @Y with K = 4T > max; || Y|y, - n
Now, let us defingy; (i) := % so that||y; ()|, = 1, and note that

P ([lyl3 = Ellyll3] > ell=l3) = P | D> lws@IIF, 76) - EG6)| > elll
J 7

We apply Theorem A.1 to the subgaussian random varialplés (over all 7, ) with weightsa;(i) = |\yj(z')||fpz. Letting
a denote a vector of length™; M; containing these weights, we have that|3 = >, >, a%(i) = >, 32, [y (9], <
cilloly, 35 3, laslls/ M7 = ctllolly, X llaill3/M; = ctllolly, IM ™23 and|lalco = maxi j a;(i) = maxi; [ly; (D)7, <
cilloll, max; [Ja;]13/M; = ctl|¢|7, M~y Further note thafiz||3 = [|v/l: and||z[|3 = |v[|?. We complete the proof by

substituting these quantities into Theorem A.1 with= 1 andt = ¢||z||3 and by takingCy = ﬁ. [ |
1

APPENDIX B: PROOF OFTHEOREMIII.2

In order to prove Theorem Ill.2, we will require the follovgriwo lemmas.

Lemma B.1. Suppose: € RV and ® is an M x N matrix where®” = [¢; ¢o --- ¢a] With eachg; € RY. Let ® be an
M.J x NJ RBD matrix as defined in (1) with alb; = ®. If y = &, then||y|2 = S, ¢7 Ap;, where A = XTX with X
defined in (6).

Proof of Lemma B.1i|y|2 = 27 &7 ®x = Z;’Zl 2T o7 or; = ZJ L] (Zl ) ¢1¢T) =M o7 (Z;’:l :cjzv;f) b; =
Zij\il ¢1TA¢1'- n

Lemma B.2. Suppose: € RY is a random vector with i.i.d. Gaussian entries each haviag-nean and variance?. For
any symmetricV x N matrix A with eigenvalue$);}¥ ;, there exists a collection of independent, zero-mean Gausandom

variables{w;} ; with variances? such thatz” Az = Zi:l Aiw?.

Proof of Lemma B.2:Becaused is symmetric, it has an eigen-decomposition= V7 DV, whereD is a diagonal matrix
of its eigenvalueg\;} ¥, andV is an orthogonal matrix of eigenvectors. Then we halielz = (V2)TD(Vz) = SN | w2,
wherew = Vz andw = [wq, we, -+, wy]?. SinceV is an orthogonal matrix{w; }Y ; are i.i.d. Gaussian random variables
with zero-mean and varianee’. [ |

Proof of Theorem 111.2: Let y = ®x. We first calculateE||y||3 to determine the point of concentration. Applying

Lemma B.1 toy and Lemma B.2 with: = ¢; for eachi = 1,2,..., M, we have|jy||2 = M, ¢T Ag; = S ZJ L X

a7’
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where each{wi,j}i_’j is an independent Gaussian random variable with zero mednuait variance. After switching the
order of the summations and observing tHatX” X) = Tr(XX7T) where Tr(-) is the trace operator, we hawg|y|% =
Yol 3 i Budy = 30 A = Tr(XXT) = |3,

Having established the point of concentration firi|3, let us now compute the probability thity||3 — ||z[13]| > el|z||3.
SinceE||y[|3 = |z|3, this is equivalent to the condition thty||3 — E|y||3| > €E|y|/3. We again apply Theorem A.1 to
establish a concentration result. To do so, note that eachis a subgaussian random variable with the same subgaussian

norm [Jwl|y, := [Jw; ;|

¥y, because these variables are Gaussian with unit varianiseaiso known [40] that there exists an

wlj

absolute constant, such that||w||,, < co. Let us definew; ; := Twl; SO that||w; ;||4, = 1, and note that
2 2 2 lwllF, - 9 2
P(llyllz — Ellylz| > ellzll3) = P ZZ 7/\3‘(“’1‘,3‘ — Ew; ;)| > ellz]3
i

2
We apply Theorem A.1 to the subgaussian random variablegover alli, j) with weightsa; (i) = %)\» Lettinga denote

a vector of IengthMJ containing these weights, we have thiat|3 = didoia 2(i) = >0 H“ﬂ;“ A3 = ”w”W Z.)\Z =

holld, ||w||w2

Jlwll% )
P2 1B < S1IMI3 and]lallo = masx; 5 a(7) = 5 ma; A =

Ao < MH)\HOO Note that|z||3 = Tr(XTX) =
[AllL and||z]|3 = [|A]]7 since the eigenvalugs\;} %, are non-negative. We complete the proof by substitutingetipiantities
into Theorem A.1 withT’ = 1 andt = ¢||z||3 and by takingC3 = é. [ |

APPENDIXC: PROOF OFTHEOREMV.1

Our result follows from an application of the following.

Theorem C.2. [35, Theorem 3.1).etz € CY" and 8 > 1. SupposeV’ > 512 and chooseV; and N, such that:

/ logN)2)
05583N"/g Nyt No < V2 N( _

Nt e S e D oe V) T+ Ul

(14)

Fix a subsetl’ of the time domain withT'| = Nr. Let() be a subset of siz&, of the frequency domain generated uniformly
at random. Then with probability at least— O((log(N"))*/2N’—#), every signal: supported orf2 in the frequency domain
has most of its energy in the time domain outsid& ofn particular, ||zr||3 < %, wherezr denotes the restriction af to

the supportT'.

Proof of Theorem V.1First, observe thaty||? = |z[|4 and||v||2 = 3=7_, [lzx]|4. Next, apply Theorem C.2 withig = S

and Ny = N = N’/ J, being careful to select a value fgrsuch that (14) is satisfied. In particular, we require

WE5) /(B+1)log N’ + (log N')?

li
1> (N +8)\/(B+1)logN and 1> V2/3
q 0.5583 N’ q N/
This is satisfied if we choose
0.5583 N’ N’

q < min

(N 4+ 8)\/(B+1)logN"’ (\];;F_S (B+1)log N’ + (log N")? 13)

Choosing any; satisfying (15), we have that witkailure probability at mostO((log(N'))Y/2(N")=8), ||lzx |3 < ”2”3 for each
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k=1,2,...,J, implying that each block individually is favorable. Tagim union bound for alk to cover each block, we
have that with total failure probability at most(.J (log(N"))Y/2(N") =), |vlI2 = 327, [laell < J”I”z . Thus with this same
failure probability,r—]\; = H Hl > L Comblmng with (15) and using the fact thdt< N, we thus have:
Iy > min 0.55832N2J N2J
M = (N+5)%(8+1)logN"’ 2
<(%) (B+1)log N’ + (log N’)Q)
. (0.55832/22).J J
- (8 +1)log(N")’ og N2 )
( %3 (B+ 1)log N’ + UesN)® g]f,v) )

APPENDIXD: PROOF OFLEMMA V.1

Proof: Let X be theJ x N matrix as defined in (6). Without loss of generality, we sugmpthe nonzero eigenvalues
I\ }mln (:N) of XTX are sorted in order of decreasing magnitude, and wejgt := A1 and Amin := Amin(s,n)- We can
lower boundA, in terms of these extremal eigenvalues by writing
M”A”% Zz /\f + Zz Z];ﬁz )\1)\.7 Amin Zz Z];ﬁl Amm
Ay = =M >M+M =M+M J—1). 16
SV e SRR W S M Y 5

wuw

Assume that < , and let us define the following events:

A= {N02(1 —e)? < X E ||Z|2 < No%(1+¢€)? Vz e RJ}, B = {Amax < No®(1+6)°} ) {dain = No?(1 =€)},
2

¢z Qi (1€ i D=d Ay > M1 2(J—1)
) Amax  \1+e€ ’ - 2= 1+e¢ '

These events satisftd = B C C' C D, where the last relation follows from (16). It follows th&( D) < P(A°), where

Ac represents the complement of evehtBecauseX” is populated with i.i.d. subgaussian random variablesylibdvs as a

corollary of Theorem 1l1.1 (by setting/ < N and.J « 1 in the context of that theorem) that for amy= R’ ande < H¢H”2

P(||XT2||3 — No?||z||3] > eNo?|z|]3) < 26Xp( Chilli\: ) . Thus, for an upper bound faP(A¢), we can follow the

straightforward arguments in [10, Lemma 5.1] and concludg P(A°) < 2 (1—3)Jexp (—M) . Thus by choosing

el
C1C3Né? c 1 CiC3NE? ;
J < 37T, log(12/e)” we see thaP’(D¢) < 2exp < 2 e, ) Finally, the fact thaf"y > A, follows from (9). [ ]
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