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Abstract—In this work we address the problem of state
estimation in dynamical systems using recent developments
in compressive sensing and sparse approximation. We
formulate the traditional Kalman filter as a one-step update
optimization procedure which leads us to a more unified
framework, useful for incorporating sparsity constraints.
We introduce three combinations of two sparsity conditions
(sparsity in the state and sparsity in the innovations)
and write recursive optimization programs to estimate the
state for each model. This paper is meant as an overview
of different methods for incorporating sparsity into the
dynamic model, a presentation of algorithms that unify the
support and coefficient estimation, and a demonstration
that these suboptimal schemes can actually show some
performance improvements (either in estimation error or
convergence time) over standard optimal methods that use
an impoverished model.

Index Terms—Compressive Sensing, Dynamical Systems,
State Estimation

I. INTRODUCTION

In data analysis, signal models play a crucial role in
our approach to acquiring and processing signals and
images. This has been especially clear in recent work
where sparsity-based models have enabled dramatic im-
provements in the solution to linear inverse problems,
especially in the context of compressive sensing (CS) for
data acquisition from undersampled measurements [1],
[2]. The excitement about these results is compounded
by the simplicity: the algorithms often rely on solving an
`1-regularized least squares problem that can be solved
with reasonable efficiency.

While many applications involve static signal estima-
tion, many more (e.g., video) have additional statistics
in the temporal signal evolution that could be exploited.
For example, though each video frame may have a
sparse decomposition in some basis, the regular motion
in the scene is likely to induce regular changes in the
coefficients from one frame to the next. In the classic
dynamical systems literature, a model for a changing
state vector and measurement process is often described

by the following equations:

xn = fn(xn−1) + νn
yn = Gnxn + εn

(1)

where xn ∈ RN represents the signal of interest,
fn(·)|RN → RN represents the (assumed known) evo-
lution of the signal from time n − 1 to n, yn ∈ RM

is a set of linear measurements of xn, εn ∈ RM

is the associated measurement noise, and νn ∈ RN

is our modeling error for fn(·) (commonly known as
the innovations). In the case where Gn is invertible
(N = M and the matrix has full rank), state estimation
at each iteration reduces to a least squares problem.
Therefore we will be particularly interested in the case of
highly underdetermined measurements of the state vector
(i.e., M � N ), which will require us to leverage of
knowledge of the state dynamics and signal structure to
accurately estimate the state at each iteration.

One special, well studied, case of the system (1)
assumes Gaussian statistics on both the measurement
noise and the modeling error (εn ∼ N (0,Qn), νn ∼
N (0,Rn)), and a linear state evolution function (i.e.
fn(x) = Fnx). The solution in this case is known as
the Kalman filter [3] which estimates the optimal state
at time n given the current set of measurements and
the previous state estimate and its covariance. While
the Kalman filter is least-squares optimal in this special
case, it cannot incorporate other innovations statistics or
additional information about the structure of the evolving
signal.

One type of signal structure which has been of par-
ticular interest recently is a low dimensional (sparse)
signal structure. Compressive sensing results show that
knowledge of such a structure can allow for low signal
recovery error in highly undersampled systems. While
such structure has been leveraged to great success in
static signal processing problems, the question of how to
successfully and efficiently utilize sparsity information in
dynamic signal estimation remains a topic of continued



research.
The framework we present in this paper seeks to

capture the essence of Kalman filtering by minimizing
the estimation complexity at each iteration while still
accounting for both the approximately known dynamics
as well as the knowledge of sparsity in the system. This
approach is most similar to that taken in [4] which uses
a similar explicit optimization function to account for
sparse measurement noise. While not globally optimal
in the sense of traditional Kalman approaches (since
the proposed algorithms only use the previous state
information to estimate the current state), we show that
the proposed approaches can show gains in estimation
error or convergence time of the estimate over both
the Kalman filter or independent CS recovery at each
time step (which are both operating with impoverished
models due to ignoring sparsity or temporal regularity,
respectively). We present in this paper three different
ways to incorporate sparsity models into a dynamical
system that result in estimation algorithms that are
intuitive modifications to the `1-regularized least squares
problem commonly used in CS. Specifically, the three
forms of sparsity in the dynamical system we propose
are 1) the evolving signal xn is sparse, 2) the error in the
signal prediction νn is sparse and 3) both the signal and
the prediction error are sparse. For each of these three
signal models we write a CS-like optimization program
to solve for the signal at each time step.

II. BACKGROUND AND RELATED WORK

A. Classical Linear State Estimation

The task of estimating the evolving state xn has
become the topic of innumerable studies and algorithms,
the most notable of which is the aforementioned Kalman
filter [3]. The optimal least squares estimate sought
by the Kalman filter essentially requires the inversion
of a large matrix with submatrices consisting of the
measurement matrices Gn, the dynamics matrices Fn,
and the identity matrix. For n very small, a small number
of measurements per iteration means that this matrix is
underdetermined, and thus the inverse will generally be
erroneous. As n gets very large, this matrix becomes
more and more complete (the number of columns grows
as nN and the number of rows grows as n(N +M)),
which means that the error in the solution given by
jointly estimating all states via a large matrix inverse
fast approaches the noise floor.

The main result of the Kalman filter shows that the full
matrix inverse need not be calculated if, at each iteration,
we are interested only in the estimate of the current state
given previous measurements. Instead each state at time

n can be solved for by a temporally local calculation
which yields the same solution as performing the calcu-
lation intensive inverse, thereby immensely reducing the
complexity in terms of the inverse problem that needs to
be solved. Additionally, given the least-squares nature
of the objective, the problem setup permits an analytic
solution. The efficiency given both the analytic and
local nature of the solution, coupled with the increasing
calculation speed of matrix operations has opened the
door for optimal, fast, realizable tracking in a framework
common enough to be widely applicable.

The underlying assumptions the Kalman filter makes
on the system (linearity and Gaussianity), however,
can be quite restrictive in broader settings: Any de-
viation may cause the algorithm to yield erroneous
solutions. Many modifications have been devised to
address this shortcoming including the Extended and
Unscented Kalman filters [5], [6] to address nonlinear
state dynamics and many variations of robust Kalman
filters have been designed to address non-Gaussian noise
models [7], [8]. Since most system and noise models
are difficult to account for analytically and efficiently,
most of these extensions attempt to modify the resulting
Kalman filter algorithm directly in order to increase the
robustness of the estimation. The one main shortcoming
of the Kalman filter and its derivatives is that none of the
algorithms explicitly take into account any underlying
signal structure (such as sparsity in the signal).

B. Compressive Sensing

With the introduction of compressive sensing tech-
niques, we are now equipped to efficiently deal with an
entirely new set of signals: signals which are sparse in
some basis. Many classical least-squares problems have
benefited greatly from utilizing the inherent low dimen-
sionality of the signal. Most notably, CS algorithms can
increase the recovery capability of a sparse vector x
from many fewer linear measurements y = Gx than
would otherwise be possible with least-squares solutions
(M � N ). The recovery, given a certain sparsity on
x and compliance with certain conditions on G (G
satisfies the RIP condition), is performed by regularizing
the classical least squares optimization program with an
`1 norm,

x̂ = argmin
x

[
‖y −Gx‖22 + λ‖x‖1

]
(2)

where λ is a parameter which trades off data fidelity
with sparsity. This optimization program is known as the
Basis Pursuit De-Noising (BPDN). While many fields,
such as image processing, have benefited greatly from
CS results, the application to dynamic signal estimation
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has not been so straight-forward. In addition to the actual
problem of how the estimation should be updated at each
iteration, the question of where in the system sparsity
could be leveraged to increase estimation performance
is not well addressed. We seek in this work to explore
where in the dynamic system it may be useful to consider
sparse underlying structures as well as how this sparsity
may be leveraged.

C. Related Work

Previous work on this topic includes [9], [10], [11],
[12], [4] and [13]. In this work we do not separate
estimating the signal support from the signal values
themselves such as in [9], [10]. Both work by Vaswani
and Kanevsky et al. rely on modifying the existing
Kalman filter Algorithm. This approach, while common
in extending Kalman filtering to non-Gaussian or non-
linear cases, does not explicitly attempt to find some op-
timal method of incorporating sparsity information. We
attempt to instead start from the new model assumptions
and work towards a solution using the tools brought forth
by the CS results. Potter et al. and Vaswani also separate
the problem of state estimation into support estimation
and value estimation. While a logical avenue to explore,
we do not separate these two aspects of the state. Instead
we leverage the ability of `1 regularized optimization
to evaluate both the support and the values together.
Additionally, in contrast to Giannakis et al. we do not
smooth, i.e. we do not estimate an entire temporal range
of signals together. Instead we concentrate here on the
filtering aspect of state estimation, reducing the problem
to a temporally local one (estimating only one state at
a time). A midway solution proposed in [13] estimates
the past P states together, aggregating measurements for
an accurate solution in the case of sparse innovations.
The resulting algorithm in [13] utilizes a fast homotopy
update to incorporate new measurements, speeding up
the estimation process. Here we attempt to speed up the
solution not by utilizing a particular solver, but by further
reducing the dimension of the optimization problem to
the point where we are only estimating the current state.

III. OPTIMIZATION FRAMEWORK FOR STATE
ESTIMATION

The framework we present here is based on the
formulation of the traditional Kalman filter as a one step
optimization problem, i.e only estimates of parameters
from the previous iteration can be used in the cost
function. In the Kalman filter, the global solution of the
state estimation problem for the system in (1) is given

by the total optimization over the entire time-line

{x̂k}nk=0 =arg min
{xk}nk=0

[
n∑

k=0

‖yk −Gkxk‖2Q−1
k ,2

+

n∑
k=1

‖xk − Fkxk−1‖2R−1
k ,2

]
, (3)

where ‖x‖2Q,2 = xHQx, Qk and Rk are the covariance
matrices of of the measurement noise and innovations,
respectively. The Kalman filter allows us to calculate
the latest state estimate x̂n from the optimization (3)
locally using only the previous estimate x̂n−1 and its
covariance. The optimization program that estimates xn

alone can be written as

x̂n =argmin
xn

[
‖yn −Gnxn‖2Q−1

n ,2

+‖xn − Fnx̂n−1‖2P−1
n|n−1

,2

]
, (4)

where Pn|n−1 is the estimated covariance matrix for
time n. Both x̂n−1 and Pn|n−1 are parameters that
are calculable iteration-to-iteration. By showing that the
solution at iteration n is the same for (??) and (??),
the dimension of the optimization to be solved at each
iteration is reduced significantly; The dimension of the
solution is decreased from nN to N . Additionally, by
writing the estimation as an optimization program, we
can begin to consider leveraging sparsity by applying
appropriate `1 norms in the same way that `1 norms are
introduced in static least-square cases. One encouraging
application in [4] addresses a case where this formu-
lation allows for the mitigation of sparse noise in the
measurement equation. We extend this idea to directly
incorporate knowledge of sparsity in the innovations and
states themselves in the estimation problem.

IV. SPARSITY IN THE DYNAMICS

In previous work, the assumptions of sparsity in the
system has varied. While many have assumed some
measure of sparsity in the state itself [9]–[11], some have
assumed knowledge of sparsity in the innovations [10]
as well. Our work here takes both possibilities (sparsity
in the state and innovations) and uses the framework
presented in order to determine the potential gains that
be realized in the context of state estimation by in-
corporating appropriate `1 norms. We primarily focus
on sparsity in the state evolution equation due to its
relevance to specific applications, such as tracking and
video. The three models we present are sparse states,
sparse innovations and both sparse states and innova-
tions. In adding the regularization terms for each case,
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we note that only the first order statistic of the previous
estimation (the expectation) is taken into account and
therefore our optimization programs are not assured to
be globally optimal. This differentiates our work from (4)
in that the Kalman filter which propagates second order
statistics (the covariance matrix of the estimate Pn|n−1)
to obtain a globally optimal solution. As [4] points
out, when deviating from the optimization problem (4),
this matrix of parameters stops having an interpretation
as a covariance matrix. Therefore we do not attempt
to estimate second order parameters, and instead only
utilize the state estimate.

A. Sparse States

The first type of sparsity we consider is sparsity
in the states only. This model still assumes that our
estimate is accurate to a Gaussian random variable (e.g.
νn ∼ N (0, σ2IN )), indicating that the predicted dynam-
ics, fn(·), return a dense estimate. Such a model could
potentially be considered, for instance, in a tracking
problem where the number of objects to be tracked are
relatively small [14]. In this case, we can add an `1 norm
over the state x to the update equation (representing our
knowledge of the sparsity of the signal), resulting in

x̂n =argmin
x

[
‖yn −Gnx‖22 + λ1‖x‖1

+ λ2‖x− fn(xn−1)‖22
]
, (5)

where λ1 is the sparsity parameter and λ2 represents
the ratio of the measurement variance to the innova-
tions variance. It is important to note here that while
the program (5) does not rely on linear dynamics and
performs well in tracking simulations, it is has no
assurance for global optimality. Thus for linear dynamics
(fn(x) = Fnxn) Kalman filtering still has assured opti-
mal performance in the steady state tracking regardless
of signal sparsity. This is due to the fact that the Kalman
in essence is piecewise updating the solution to a larger
matrix inverse problem. Given enough measurements,
this matrix will be full rank, resulting in a fully deter-
mined system. Thus while our program has no assurance
of obtaining a better steady-state MSE, we do expect
that it will converge faster (when the Kalman filter is
still underdetermined).

B. Sparse Innovations

While including the idea of sparseness in the state
is useful during convergence, there is no apparent gain
in the steady state MSE over traditional Kalman filters.
Where more significant gains over the Kalman filter
should be realized is in the case of sparse innovations.

The Gaussian assumption is key to the derivation of
the Kalman filtering equations, without which the es-
timate covariance matrix is not exactly and analytically
cacluable (making the estimate suboptimal). The sparse
innovations model leads to using the `1 norm on the
error of the prediction,

x̂n = argmin
x
‖yn −Gnx‖22 + λ‖x− fn(xn−1)‖1,

(6)

where λ represents the trade off between reconstruction
and sparsity. A setup of this type was initially presented
in [13], only with a buffer that estimated the past
P states at once, effectively smoothing to an extent.
In keeping with the fast-update philosophy of Kalman
filtering, a homotopy algorithm was used to update states
given new measurements, thereby decreasing the time
for the update. What is interesting in the optimiza-
tion program (6) is that under a change of variables
νn = x− fn(xn−1) and given a known sparsity on the
innovations, the innovations is then recoverable with CS
guarantees, given the typical constraints on Gn. Thus
with perfect knowledge of the previous state, the new
state is recoverable with the same guarantees. What is
not assured is the convergence of this algorithm from
an erroneous initialization to a steady-state estimation
error, as would be desired from a tracking algorithm. We
show from simulation that it takes more measurements
to have (6) converge than either of the algorithms that
utilize the state sparsity directly. While obtaining a lower
error vs. per-iteration measurement number, [13] shows
that when estimating the past P states together, the this
model permits a fast update (faster than using BPDN
directly) using homotopy steps.

C. Sparse States and Sparse Innovations

The final case we consider in this paper is the case
where both the state and the innovations are sparse.
This combination is of the most interest to us due
to its application to video where each image can be
thought of as sparse in some basis and ‘new’ objects
not predictable from older frames can be thought of as
sparse innovations. In this case there are two forms of
sparsity that can be leveraged. We can modify (6) to
include the sparsity inducing term included in (5),

x̂n =argmin
x

[
‖yn −Gnx‖22 + λ1‖x‖1

+λ2‖x− fn(xn−1)‖1] , (7)

where once again λ1 trades off for sparsity in the state
and λ2 trades off for sparseness in the innovations.

4



0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Iteration Number

rM
S

E

 

 

Sparse State

Sparse Innovation

Both Sparse

CS

Kalman Filter

Fig. 1. By incorporating the state sparsity in the optimization program,
the rMSE converges to its steady-state value faster than a traditional
Kalman filter. As expected, independent BPDN performs identically at
each iteration and the least matched model (sparsity in the innovations
only) diverges in terms of the steady-state rMSE.

V. RESULTS

We test the optimization programs on randomly gen-
erated sequences of temporally evolving signals that
include sparsity in the signals and the prediction er-
rors. First, we use a standard Gaussian innovation and
compare the standard Kalman filter with the optimiza-
tions (5), (6), (7), and BPDN performed independently
at each iteration (optimization (2), denoted CS in the
figures) to demonstrate the utility of leveraging only the
sparsity of the signal. We simulate a 20-sparse state of
length 500 evolving by a permutation matrix followed
by a scaling matrix (both different at each iteration, and
assumed known a-priori) with zero-mean, 0.001 vari-
ance Gaussian innovations. A Gaussian random matrix
(different at each step) is used to take 30 measurements
at each iteration with i.i.d. zero mean, variance 0.01
measurement noise. For each optimization, λ1 and λ2
were chosen by performing a parameter sweep and
choosing the best value. For Figure 1 and all subsequent
simulations we initialize the state to the zero vector and
obtain the expected behavior by averaging over 40 trials.

Figure 1 demonstrates that while the Kalman filter
does indeed reach the noise floor after enough iteration,
(5) does, as predicted, reach a lower relative MSE
(rMSE) during the time frame where Kalman has not yet
accumulated enough measurements. Due to the global
suboptimality of (5) it does not reach lower steady-state
rMSE. However, the tracking error is comparable to that
of the Kalman filter which is an optimal solution in
this case. What is interesting to note is that (7), the
program that attempts to enforce sparsity in the state and
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Fig. 2. Without Gaussian noise, the Kalman filter has significant trou-
ble tracking the evolving signal, and requires more measurements than
any optimization program which takes the sparsity of the signal into
account, including independent BPDN. Only using sparse innovations
does not outperform any model for small numbers of measurements,
but converges quickly for M > 150.

the innovations, seems to outperform in both regimes: It
obtains a lower steady-state rMSE in less iterations.

To show the performance with sparse innovations, we
again estimate a simulated 20-sparse, 500-dimensional
vector evolving with the same dynamics as used for Fig-
ure 1 with each of the optimization programs presented
and compare to independent BPDN, and the Kalman
filter. In this case, sparse innovations are introduced
via a Poisson random variable with mean 2 (10% of
the total number of active coefficients) choosing how
many coefficients (chosen at random with a uniform
probability over the support) will be switched. This
effectively simulates a sparse change in the support of
the signal. We allow the system to run for 50 iterations,
and record the steady-state rMSE for a different number
of random Gaussian measurements. Figure 2 shows that
the number of measurements needed (e.g. rows of Gn)
for a given steady state tracking error when utilizing
both knowledge of sparsity in the state and innovations
is significantly less than using any other method. For
this program, 60 measurements is sufficient to obtain an
rMSE of approximately 3%, while with the same number
of measurements independent CS has approximately
17% rMSE and both models which assume Gaussian
innovations have much higher steady-state rMSE values.

Figure 3 shows results using an identical setup to
Figure 2, only fixing the number of measurements at
M = 80 and sweeping the mean number of coefficients
changed (half the effective sparsity of ν). We see that the
optimization in (7) again performs better in terms of the
steady-state rMSE. Independent CS recovery performs as
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Fig. 3. The optimization taking both sparsity in the state and
innovations retained the lowest steady-state rMSE for more increased
innovations sparsity given a fixed number of measurements (M = 80).
The performance for BPDN remains constant, as expected, and the per-
formance for the models dependent on Gaussian innovations degrades
quickly with additional support deviations from the expectation.

expected (the rMSE is independent of innovations), and
both models using Gaussian noise obtain very high errors
very quicky with the sparsity of ν. The optimization (6)
is not shown here due to its inability to converge to a
steady state error with only M = 80 measurements per
iteration. It would seem that as ν became more dense,
the Gaussian model would be a better fit, but the energy
over the support of ν is on the order of the energy on
the support in the state itself, so the sparsity knowledge
is required to tease the two apart.

VI. CONCLUSION

We have presented here a framework within which
a-priori sparsity knowledge of a dynamically evolving
state can be leveraged to estimate the current state from
a small set of linear measurements at each iteration and
the previous state estimate. By writing the estimate of
an evolving state as a local optimization program, we
are able to adapt a traditionally least-squares problem
to a setting where sparsity can be directly addressed by
the cost function. The three examples of sparsity in the
dynamical system we introduce, and the corresponding
optimization problems we use to estimate the state, show
that this framework can yield improvements in both
convergence rates and steady-state errors.

The formulation as it stands makes very limited as-
sumptions on the system itself. Nowhere is the linearity
of the dynamics utilized in the estimator. The algorithms
do, however, require knowledge of the parameters λ1 and
λ2 which can only be approximated based on knowledge

of sparsity and noise values in the system. One avenue
of future work is to determine these values more exactly
based on estimated noise variance and signal/innovations
sparsity. Additionally, the behavior of (6) needs to be fur-
ther explored to determine why it is unable to converge in
a timeframe and with measurement numbers comparable
to (7) and (5). Simulations better fitting the underlying
model would likely better highlight the behavior of (6).

Significant work also remains to be done to determine
the extent to which these models are a substantial fit
for natural signals of interest, whether more efficient
algorithms can be developed to perform the estimation,
how the system dynamics can be estimated if they are
unknown, and whether the entire history of the dynamic
process can be efficiently incorporated into the estimate
in a manner similar to the Kalman filter.
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