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1 Introduction

Sparsity-based signal decompositions have recently been used in many applications from inverse
problems in image processing (i.e. de-blurring, de-noising or inpainting) [6] to novel imaging pro-
cedures such as compressive sensing [2]. These methods typically rely on decomposing a signal x
into a small number of atoms from a potentially over-complete dictionary of atoms Ψ. Concisely
we can write

x = Ψa+ ε,

where a is the coefficient vector which is assumed to be mostly zeros and ε is the modeling error.
We can recover this sparse coefficient vector from the signal x via the basis-pursuit de-noising
(BPDN) optimization problem

â = arg min
a
‖x−Ψa‖22 + γ ‖a‖1 .

In the case where x is observed indirectly via a linear measurement operation Φ as

y = Φx+ ε = ΦΨa+ ε,

where ε is now a combination of potential modeling and measurement errors, a similar optimization
program recovers the sparse coefficients:

â = arg min
a
‖x−Ψa‖22 + γ ‖a‖1 .

One alternative to BPDN uses an iterative procedure to obtain more accurate solutions. While
lacking the precise recovery guarantees available for BPDN (see [1]), re-weighted `1 (RWL1) has
been observed to empirically recover sparse coefficients more accurately than BPDN [3, 8]. RWL1
works by weighting coefficients in a BPDN-style optimization procedure based on confidence in
the coefficient being active and large. Specifically, RWL1 alternates between solving the weighted
BPDN

ât = arg min
a
‖x−Ψa‖22 + λ0

∥∥Λt−1a
∥∥
1
.

λ[k]t =
α

|ât[k]|+ β
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where λ0, α and β are pre-set parameter, t is the algorithmic iteration, and Λ = diag(λ) is a diagonal
matrix consisting of the weights trading off the different coefficients. Larger weights enforce stricter
sparsity, encouraging coefficients to be zero, while lower weights encourage coefficients to be non-
zero in the signal description. The re-weighting step amplifies this effect at each iteration, further
encouraging active coefficients to have less penalized values and in-active coefficients to be more
heavily penalized.

1.1 Re-weighted `1 with Spatial Filtering

While these algorithms have worked well for single-signal inference, many datasets consist of many,
correlated signals. As a special case, this code package considers the two-dimensional case where
spatially correlated signals are to undergo inference all at once. Mathematically, we can index each
spatial location as {i, j}, and that each spatially correlated vector can be considered independent
given the underlying sparse coefficients:

xi,j =
∑

φkai,j [k] + εi,j = Φai,j + εi,j ,

Likewise, in this code package, we also consider the measurements as spatially independent
when conditioned on the sparse coefficients:

yi,j = Ψxi,j = BΦai,j + ε̃i,j ,

While in general, more complex measurement systems can be considered, i.e.

yi,j = ψ({xi,j}) (1)

where ψ(·) is potentially a function of all x at all locations, here we consider the independent
case. This case is still relevant in many applications and allows us to leverage parallelization in the
implementation. Although each measurement vector can be used to independently to recover the
coefficients at each spatial location via the BPDN optimization, greater accuracy can be achieved
by leveraging spatial dependencies between the sparse coefficients. One such dependence is that the
coefficient values might have spatial consistency, i.e. the values of the kth coefficient over the spatial
indices {i, j} (ai,j [k]) may change slowly, or tend to be clumped together. This package leverages
these dependencies via the RWL1 optimization to create a RWL1 spatial filtering (RWL1-SF) algo-
rithm, as presented in [5]. Essentially, the algorithm function much as the RWL1 algorithm would,
if run independently at each location), with the one change that the update for the regularization
parameter at each index and spatial location include an extra term in the denominator as:

λi,j [k] =
α∣∣∣[K ∗Ak]i,j

∣∣∣+ β

where the term [K ∗Ak]i,j represents the {i, j}th term of the kernel K ∈ RL×P convolved with the

spatial field of previous estimates for the kth coefficient. Note that while this spatial regularization
can accumulate weak evidence spread over several neighboring pixels to perform inference, the
model does not force spatial homogeneity so that single-pixel (or sub-pixel) objects are missed.
In other words, rather than low-pass filtering the estimates of interest (the ai,j,k variables), the
spatial averaging is applied to a second order variable (γi,j,k) that simply biases a sparse inference
process. In fact, though an explicit test with single-pixel anomalies is beyond the scope of this
letter, previous work using this approach for dynamic filtering [4] showed that this method of
stochastic filtering is particularly robust to model mismatch.
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Table 1: Functions included in the Dctionary Learning Library
Function Name Description

gen multi infer Run BPDN for multiple vectors (in parallel)

gen rw multi infer Run RWL1 for multiple vectors (in parallel)

rwl1sf infer Run RWL1-SF for a data cube

HSI RWinfer test Test script to run HSI RWinfer

l1ls nneg wrapper Wrapper for l1ls with non-negativity constraints

HS image Function that reshapes HSI vectors in a 3D array

recom best Permutes a matrix’s rows and columns to maximize the diagonal sum

sangle Function to evaluate spectral angles

HSI2MSI Converts an HSI image to a simulated MSI image

match vecs Function that matches one set of vectors with a reference set

compare ix Counts the value matches between two vectors

2 Code Functionality

The code in this library is aimed at allowing a user to input a dataset and to extract the spatially
varying sparse coefficients via the RWL1-SF optimization procedure [5]. The BPDN sub-problem
is solved using functions included in the l1 ls package [7]. Other methods can be used instead by
changing the l1ls nneg wrapper function to a wrapper that calls another BPDN-type solver. For
general help with a specific function, type help then the function name for comments on its use.

2.0.1 Included Functions

The included functions are shown in Table 1. The main function is rwl1sf infer.
For more information on these functions, please refer to their help files.

2.0.2 Writing Your Own Wrapper

While wrappers are included for the l1ls package’s non-negative inference function, any function
can be used as long as a wrapper is written for it and passed to the main function. To write a
wrapper, simply use the same inputs/outputs as the existing wrappers and any extra parameters
needed can be passed through using the opts struct. The inputs to the wrapper must be of the form
(dictionary n, x im, opts), and the output must be a single output: coef vals. The wrapper
simply extracts the necessary options from opts and organizes the inputs into the inference function.
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